Главная /
Логические нейронные сети /
Для выполнения алгоритма трассировки необходимо предварительно построить матрицу следования, отображающую все потенциальные статические пути возбуждения, ведущие от нейронов-рецепторов, "участвующих" в логическом выражении, к нейрону выходного слоя, соотв
Для выполнения алгоритма трассировки необходимо предварительно построить матрицу следования, отображающую все потенциальные статические пути возбуждения, ведущие от нейронов-рецепторов, "участвующих" в логическом выражении, к нейрону выходного слоя, соответствующего решению. Для логического выражения в описании СПР постройте матрицу следования для обучения первому эталону, предварительно введя транзитивные и дополнительные связи.
Система логических выражений:
Матрица следования:
вопросПравильный ответ:
Сложность вопроса
79
Сложность курса: Логические нейронные сети
81
Оценить вопрос
Комментарии:
Аноним
Гранд мерси за тесты по intiut'у.
24 сен 2019
Аноним
Это очень заурядный тест по интуиту.
05 май 2019
Аноним
Это очень простецкий вопрос по интуиту.
06 мар 2017
Другие ответы на вопросы из темы искусственный интеллект и робототехника интуит.
- # Воспользовавшись принципом "размножения" решений, убедитесь в том, что первоначальная постановка задачи в игре "железнодорожная рулетка" решительно опровергает все попытки экономии личных финансовых средств начальника станции Кукуевка. Постройте совершенную нейронную сеть и на основе анализа эталонных ситуаций, а также на основе вариантов приблизительных оценок, установите правильность ее "работы" при передаточной функции \begin{array}{l} V=\sum_j V_j \\ V_i = \left \{ \begin{array}{ll} V, & \mbox{если } V \ge h \\ 0, & \mbox{в противном случае} \end{array}\right \end{array} [Большая Картинка] А1 = 0,8, А2 = 0,2, В1 = 0,7, В2 = 0,3 .
- # Для правильной совершенной нейронной сети, используемой в бабушкиной СПР 1. x1 ∧ x4 → R1= "Прогулка на велосипеде"; 2. (x1 ∧ x6) ∨ (x2 ∧ x4) → R2= "Шахматы"; 3. (x2 ∧ x5) ∨ (x1 ∧ x7) → R3= "Верховая езда"; 4. (x1 ∧ x5) ∨ (x2 ∧x6) → R4= "Байдарка"; 5. x3 ∧(x4 ∨ x6) → R5= "Дискотека"; 6. (x2 ∧ x7)∨ (x3 ∧(x5 ∨ x7)) → R6= "Пешая прогулка" исследуйте и обсудите возможность применения данной передаточной функции на основе анализа эталонных ситуаций. Передаточная функция имеет вид: \begin{array}{l} V=\frac{1}{m}\sum_j V_j \\ V_i = \left \{ \begin{array}{ll} V, & \mbox{если } V \ge h \\ 0, & \mbox{в противном случае} \end{array}\right \end{array} (m– число активных входов нейрона, в данном случае m = 3). Рекомендуется принять h = 0,5.
- # Исследуйте возможность социально-исторического прогнозирования с помощью логической нейронной сети. Сформулируйте свои соображения о построении логической нейронной сети, прогнозирующей моральное состояние общества.
- # Составьте нейронные сети по схемам систем принятия решений. Примите во внимание, что при расчете передаточной функции N1 входные сигналы принимаются элементом N1 с весом, равным обратной величине количества входов этого элемента. Следовательно, эти веса являются весами соответствующих связей в нейронной сети. Выберите передаточную функцию: (fj – значение входного сигнала), если эта сумма превышает порог h . Произведите верификацию сети на основе известных решений по четко заданным ситуациям. [Большая Картинка]
- # Воспользуйтесь приведенной ниже логической нейронной сетью Участкового Уполномоченного и передаточной функцией \begin{array}{l} V=\sum_j V_j \\ V_i = \left \{ \begin{array}{ll} V, & \mbox{если } V \ge h \\ 0, & \mbox{в противном случае} \end{array}\right \\ h=0,5 \end{array} [Большая Картинка] Положите веса связей равными обратной величине количества входов нейрона. Максимально возбудите нейрон Х = Василий . Проанализируйте "ответ" нейронной сети.