Главная /
Введение в схемы, автоматы и алгоритмы /
Чему равна глубина схемы S1, реализующей функцию сложения однобитовых чисел?
Чему равна глубина схемы S1
, реализующей функцию сложения однобитовых чисел?
вопрос
Правильный ответ:
4
5
6
7
8
Сложность вопроса
16
Сложность курса: Введение в схемы, автоматы и алгоритмы
92
Оценить вопрос
Комментарии:
Аноним
Я сотрудник деканата! Немедленно сотрите сайт и ответы с интуит. Немедленно!
18 апр 2019
Аноним
ответ подошёл
24 дек 2018
Другие ответы на вопросы из темы алгоритмы и дискретные структуры интуит.
- # [Большая Картинка] Какую булеву функцию реализует эта логическая схема в вершине a ?
- # Пусть задана УБДР D=(V,E): V={v1(x), v2(y), v3(y), v4(z), v5(z), v6(z), v7(w), v8(w), , 0, 1} (в скобках после имени вершины указана переменная, которой она помечена), E = { (v1, v2; 1), (v1, v3; 0), (v2, v4; 0), (v2, v5; 1), (v3, v5; 1), (v3, v6; 0), (v4, v7; 0), (v4, v8; 1), (v5, v7; 0), (v5, v8; 1), (v6, v8; 1), (v6, v7; 0), (v7, 0; 1), (v7, 1; 0), (v8, 0; 0), (v8, 1; 1)} ( для каждого ребра третий параметр после ; - его метка 0 или 1). Постройте по D эквивалентную ей сокращенную УБДР и укажите ее сложность.
- # Какой язык L является конкатенацией двух языков: L1= {a, ab, abba} и L2= { ε, a, b, ba}?
- # Пусть язык L в алфавите {a, b, c}, состоит из всех слов, которые начинаются на cac и содержат подслово bcb Какая из следующих фраз определяет язык h(L), являющийся образом L при гомоморфизме h: {a, b, c}* → {0, 1}* где h(a) = 0, h(b) = 11, h(c) = ε ?
- # Приведенные ниже машины Тьюринга Mi (i= 1,2,3,4) M1 = Зам(∧, *); Зам(∧,|); while Нуль12 do par*( Выч1, Коп#; Зам(#, |); Выч1) enddo; Выб22 M2 = Зам(∧, *); Зам(∧,|); while Нуль12 do par*( Выч1, Коп#; par# (Пуст, Коп#); Зам(#, |); Зам(#, |); Выч1; Выч1) enddo; Выб22 M3 = if Нуль11 then Пуст else Коп* Зам(∧, *); Зам(∧,|); while Нуль13 do par*( Выч1, Коп#, Пуст); par# (Пуст, Умн); Зам(#, *)) enddo; Выб33 endif. M4 = if Нуль11 then Пуст else Коп* Зам(∧, *); while Нуль13 do par*( Выч1, Коп#, Пуст); par# (Пуст, Сум); Зам(#, *)) enddo; Выб33 endif. построены из простых машин Тьюринга Копa , Зам(a, b), Сум, Умн и Пуст, описанных в задаче 4, и машин Выбin – выбирает i-ый аргумент из n аргументов: x1*…*xi*…*xn ⇐ xi ,Нульin - выдает 1, если i-ый аргумент из n аргументов равен ∧ (нулю) и выдает 0, если этот аргумент не равен 0 (имеет вид |i , i >0),Выч1 – вычитает единицу в унарной системе: |j ⇐ |j-1 (| ⇐ ∧) Какая из этих машин вычисляет функцию f(x) = 2x в унарном кодировании, т.е. переводит вход |x в выход |y, где y = 2x?