Главная /
Введение в схемы, автоматы и алгоритмы /
[картинка] Какая из следующих формул задает булеву функцию, которую реализует эта диаграмма?
Какая из следующих формул задает булеву функцию, которую реализует эта диаграмма?
вопросПравильный ответ:
(X1 ∧ X3) ∨ (X2 ∧¬X3)
(X1 ∧ ¬X2 ∧ X3) ∨ (X2 ∧ X3))
(X1 ∨ X2) ∧(X2 ∧X3)
(X1 ∧ X3) ∨ (X2∧ X3)
X2 ∧ ¬X3
(X2 ∧ ¬X3) ∨ (X1 ∧¬X2 ∧ X3)
Сложность вопроса
90
Сложность курса: Введение в схемы, автоматы и алгоритмы
92
Оценить вопрос
Комментарии:
Аноним
Кто находит эти вопросы inuit? Это же изи
09 ноя 2019
Аноним
Я сотрудник деканата! Немедленно заблокируйте ответы на интуит. Не ломайте образование
05 мар 2019
Аноним
Какой студент ищет данные тесты inuit? Это же элементарно (я не ботан)
30 окт 2018
Другие ответы на вопросы из темы алгоритмы и дискретные структуры интуит.
- # Пусть задана логическая схема S=(V, E) : V= {a (X1), b(X2), c(X3), d(¬),e(¬), f(∨),g(∨),h(∨), i(∧), k(∧) } (после имени вершины в скобках указана ее метка - переменная или булева функция), E= { (a, d), (a, g), (b, e), (b, f), (b, g), (c, f), (d, h), (e, h), (f,k), (g,i), (h, i), (i, k) }. Какую булеву функцию реализует схема S=(V, E) в вершине k? (В ответах функции заданы последовательностями 8 нулей и единиц - их значениями на лексикографически упорядоченных наборах значений аргументов X1, X2 и X3)
- # Пусть S={aaa, aab, aba, abb, baa, bab, bba, bbb} Какая из следующих фраз описывает итерацию S* этого языка?
- # Пусть регулярное выражение (ab)*a определяет некоторый язык над алфавитом S={a, b} . Другим регулярным выражением для этого языка может быть:
- # Пусть заданы три функции: f(x,y,z) = xy +z, g(x,y) = 2x + y, h(x) =2x2 Какую функцию F(x1,x2) задает выражение [f;[g;I21, I21], I21 , [h; I22 ]] ?
- # Предположим, что в некоторой конфигурации машины Тьюринга M на ленте записано слово w в алфавите Σ, не содержащем символов ∧ и *, но головка "заблудилась" – она наблюдает символ ∧ и не знает левее или правее слова w находится. Какие из следующих программ помогут найти начало слова w, т.е. любую конфигурацию вида q ∧k w или w∧k q ∧ (k > 0) переведут в конфигурацию q'w ? (В текстах программ a – это произвольный символ из Σ, используемые состояния: q, q', l, r, l1, r1 , l2 , r2, l3, r3, l4) P1: q ∧ → l1 * Л, l1∧→ r * П, l1a→ l2a П, l2 a→ l2 a Л, l2 ∧→ q'∧ П, r∧ → r ∧ П, r *→ r1 ∧ П, r1 ∧→ l * Л, l ∧→ l ∧ Л, l *→ l1 ∧ Л, r1 a→ r2a Л, r2 ∧→ r2∧ Л, r2 *→ r3∧ П, r3∧→ r3∧ П, r3 a→ q'a Н. P2: q ∧ → l1 * Л, l1∧→ r * П, l1a→ l2a П, l2 ∧→ l2∧ П, l2 *→ l3∧ Л, l3 ∧→ l3∧ Л, l3 a→ q'a Н, r∧ → r ∧ П, r *→ r1 ∧ П, r1 ∧→ l * Л, l ∧→ l ∧ Л, l *→ l1 ∧ Л, r1 a→ r2a Л, r2 ∧→ r2∧ Л, r2 *→ r3∧ П, r3∧→ r3∧ П, r3 a→ q'a Н. P3: q ∧ → l1 * Л, l1∧→ r * П, l1a→ l2a П, l2 ∧→ l2∧ П, l2 *→ l3∧ Л, l3 ∧→ l3∧ Л, l3 a→ l4 a Л, l4 a→ l4 a Л, l4 ∧→ q'∧ П, r∧ → r ∧ П, r *→ r1 ∧ П, r1 ∧→ l * Л, l ∧→ l ∧ Л, l *→ l1 ∧ Л, r1 a→ r2a Л, r2 ∧→ r2∧ Л, r2 *→ r3∧ П, r3∧→ r3∧ П, r3 a→ q'a Н.