Главная /
Математическая экономика /
Пусть объём производства ([формула]). Ответ введите с точностью до 2-го знака после запятой.
Пусть объём производства () определяется функцией Кобба-Дугласа: . При этом инвестируется доля продукта, совпадающая с показателем степени . , где: – капитал, – инвестиции, – год, – лаг инвестирования. Считать и постоянными. Найти отношение объёмов капитала при для и . (). Ответ введите с точностью до 2-го знака после запятой.
вопросПравильный ответ:
0,84
Сложность вопроса
87
Сложность курса: Математическая экономика
75
Оценить вопрос
Комментарии:
Аноним
Большое спасибо за решениями по intiut'у.
05 окт 2018
Аноним
Зачёт прошёл. Иду пить отмечать халяву с тестами интуит
27 ноя 2017
Другие ответы на вопросы из темы математика интуит.
- # Пусть спрос () и предложение () линейные функции цены (): d=a-bp; s=\alpha-\beta p. Скорость изменения цены: . Решение этого уравнения имеет вид: . 525211 Найти цену (в долях от равновесной цены) через 0,5 от постоянной времени. Ответ введите с точностью до 3-го знака после запятой.
- # Пусть производство инвестиционных товаров () зависит от нормы процента () линейно: . Производство () определяется функцией Коба-Дугласа , (-занятая рабочая сила, – используемый капитал). , где – производство потребительских товаров. . Отсюда . (Считать =0,5.) 10,10,410,053 На сколько процентов уменьшится количество занятых, если составит 3,1? Ответ введите с точностью до 1-го знака после запятой.
- # Предлагается следующая модель инфляции. Денежная масса () зависит от процентной ставки () следующим образом: . Производство определяется функцией Кобба-Дугласа: . Цены: , где и относятся к предыдущему периоду. Из следует . M80d100f2r10A1α0,5L1K7 Полагая прочие параметры неизменными, найти во сколько раз по сравнению с периодом стабильности изменится капитал, если процентная ставка уменьшится до 5. Ответ введите с точностью до 3-го знака после запятой.
- # Предлагается следующая модель инфляции. Денежная масса () зависит от процентной ставки () следующим образом: . Производство определяется функцией Кобба-Дугласа: . Цены: , где и относятся к предыдущему периоду. Из следует . M80d100f2r10A1α0,5L1K7 Полагая прочие параметры неизменными, найти во сколько раз по сравнению с периодом стабильности изменятся цены, если процентная ставка уменьшится до 3. Ответ введите с точностью до 3-го знака после запятой.
- # Производство на одного работающего (в модели Кобба-Дугласа) равно: . Оптимальная фондовооружённость с точки зрения максимума потребления на одного работающего равна . Здесь использованы следующие обозначения: – доля ВВП идущая на капитализацию; – годовой темп прироста числа занятых; – доля выбывших за год основных производственных фондов; – коэффициент. Фондовооружённость, ниже которой её рост происходит ускоренно . Пусть . Найти во сколько раз увеличится производство на одного занятого при если увеличить в 2 раза. Ответ введите с точностью до 2-го знака после запятой.