Главная /
Математическая экономика /
Рассмотрим дифференциальную модель работы фирмы, являющейся главным поставщиком продукции на рынок. Цена продукции ([формула]" - себестоимость.) [таблица] На сколько процентов увеличится объём производства к моменту времени t=1. Ответ введите с точностью
Рассмотрим дифференциальную модель работы фирмы, являющейся главным поставщиком продукции на рынок. Цена продукции () зависит от объёма производства () следующим образом: . Скорость прироста продукции () пропорциональна инвестициям (): . Выручка фирмы равна . Норма инвестиций . Инвестиции составляют . Таким образом, . Решением этого уравнения является логистическая функция: , где - объём производства в момент времени . (В таблице исходных данных "" - себестоимость.)
80 | |
4 | |
0,5 | |
0,4 | |
10 | |
5 |
Правильный ответ:
38,0
Сложность вопроса
89
Сложность курса: Математическая экономика
75
Оценить вопрос
Комментарии:
Аноним
Экзамен сдал на 5. Спасибо за ответы
01 окт 2017
Другие ответы на вопросы из темы математика интуит.
- # Производственная функция фирмы: . Известны цены на продукцию, капитал и рабочую силу: . Найти на сколько рублей увеличится прибыль при увеличении капитала на 1 рубль. 1512230,5 Ответ введите с точностью до 3-го знака после запятой.
- # Производство на одного работающего (в модели Кобба-Дугласа) равно: . Оптимальная фондовооружённость с точки зрения максимума потребления на одного работающего равна . Здесь использованы следующие обозначения: – доля ВВП идущая на капитализацию; – годовой темп прироста числа занятых; – доля выбывших за год основных производственных фондов; – коэффициент. Пусть . Найти во сколько раз изменится , если увеличить в 2 раза. Ответ введите с точностью до 2-го знака после запятой.
- # Пусть объём производства () определяется функцией Кобба-Дугласа: . При этом инвестируется доля продукта, совпадающая с показателем степени . , где: – капитал, – инвестиции, – год, – лаг инвестирования. Считать и постоянными. Найти отношение объёмов капитала при для и . () Ответ введите с точностью до 2-го знака после запятой.
- # Дана неоклассическая производственная функция: Кобба-Дугласа: . Во сколько раз изменится , если увеличится в 2 раза? Ответ введите с точностью до 2-го знака после запятой.
- # Производство на одного работающего (в модели Кобба-Дугласа) равно: . Оптимальная фондовооружённость с точки зрения максимума потребления на одного работающего равна . Здесь использованы следующие обозначения: – доля ВВП идущая на капитализацию; – годовой темп прироста числа занятых; – доля выбывших за год основных производственных фондов; – коэффициент. Пусть . Найти во сколько раз изменятся удельные инвестиции, если увеличить в 2 раза. Ответ введите с точностью до 2-го знака после запятой.