Главная /
Математическая экономика /
Произведённые в год [формула]. Если это уравнение имеет единственное решение, то [формула]. Если характеристическое уравнение имеет два различных корня ([формула]. [таблица] Найти значение [формула]. Ответ введите с точностью до 1-го знака после запятой.
Произведённые в год товары () представлены потребительскими товарами () и инвестиционными (): . Инвестиции в год зависят от прироста производства в прошлом году () по сравнению с позапрошлым (): . Потребление в год зависит от выпуска продукции в прошлом году: . Таким образом: . Если положить , то разностное уравнение принимает вид: . Вид решения этого уравнения зависит от значений корней характеристического уравнения: . Если это уравнение имеет единственное решение, то . Если характеристическое уравнение имеет два различных корня ( и ), то . (Считать, что больше ) Если характеристическое уравнение имеет пару комплексно сопряжённых корней: , где – мнимая единица, то: . Коэффициенты и могут быть определены из начальных условий для и .
100 | |
110 | |
0,05 | |
0,3 | |
5 |
Правильный ответ:
38,5
Сложность вопроса
70
Сложность курса: Математическая экономика
75
Оценить вопрос
Комментарии:
Аноним
Благодарю за помощь по интуит.
28 мар 2019
Аноним
Это очень не сложный вопрос по интуиту.
19 ноя 2015
Другие ответы на вопросы из темы математика интуит.
- # Заданы пары значений величин x и y. 123451225314254 Найти их ковариацию. Ответ введите с точностью до 1-го знака после запятой.
- # Пусть производственные функции секторов экономики имеют вид: X_0=6,19 K_0^{\alpha_0}L_0^{1-\alpha_0} \\ X_1=1,35 K_1^{\alpha_1}L_1^{1-\alpha_1} \\ X_2=2,71 K_2^{\alpha_2}L_2^{1-\alpha_2} 0,460,680,49 На сколько процентов увеличится производства сектора 2 при увеличении числа занятых в нём на 1%? Ответ введите с точностью до 2-го знака после запятой.
- # Производственная функция фирмы: . Известны цены на продукцию, капитал и рабочую силу: . Найти на сколько единиц увеличится производство () при увеличении затрат на рабочую силу на 1 рубль. 11558230,5 Ответ введите с точностью до 3-го знака после запятой.
- # Рассмотрим дифференциальную модель работы фирмы, являющейся главным поставщиком продукции на рынок. Цена продукции () зависит от объёма производства () следующим образом: . Скорость прироста продукции () пропорциональна инвестициям (): . Выручка фирмы равна . Норма инвестиций . Инвестиции составляют . Таким образом, . Решением этого уравнения является логистическая функция: , где - объём производства в момент времени . (В таблице исходных данных "" - себестоимость.) 12080,50,4105 На сколько процентов сократится выручка к моменту времени t=1. Ответ введите с точностью до 1-го знака после запятой.
- # Производство на одного работающего (в модели Кобба-Дугласа) равно: . Оптимальная фондовооружённость с точки зрения максимума потребления на одного работающего равна . Здесь использованы следующие обозначения: – доля ВВП идущая на капитализацию; – годовой темп прироста числа занятых; – доля выбывших за год основных производственных фондов; – коэффициент. Фондовооружённость, ниже которой её рост происходит ускоренно . Пусть . Найти во сколько раз (при увеличении в два раза) увеличится . Ответ введите с точностью до 2-го знака после запятой.