Главная /
Математическая экономика /
В экономике два сектора. Известна матрица межотраслевых связей: [таблица] Производство по отраслям составляет: [таблица] Найти конечное потребление.
В экономике два сектора. Известна матрица межотраслевых связей:
0,1 | 0,15 |
0,2 | 0,05 |
3 |
6 |
Правильный ответ:
5,15 |
1,85 |
3,3 |
2,6 |
1,8 |
5,1 |
Сложность вопроса
67
Сложность курса: Математическая экономика
75
Оценить вопрос
Комментарии:
Аноним
Если бы не эти ответы - я бы не смог решить c этими тестами интуит.
14 май 2016
Аноним
Кто гуглит эти вопросы по интуит? Это же элементарно (я не ботан)
11 май 2016
Другие ответы на вопросы из темы математика интуит.
- # Произведённые в год товары () представлены потребительскими товарами () и инвестиционными (): . Инвестиции в год зависят от прироста производства в прошлом году () по сравнению с позапрошлым (): . Потребление в год зависит от выпуска продукции в прошлом году: . Таким образом: . Если положить , то разностное уравнение принимает вид: . Вид решения этого уравнения зависит от значений корней характеристического уравнения: . Если это уравнение имеет единственное решение, то . Если характеристическое уравнение имеет два различных корня ( и ), то . Если характеристическое уравнение имеет пару комплексно сопряжённых корней: , где – мнимая единица, то: . Коэффициенты и могут быть определены из начальных условий для и . 1001100,010,23 Найти значение . Ответ введите с точностью до 1-го знака после запятой.
- # Произведённые в год товары () представлены потребительскими товарами () и инвестиционными (): . Инвестиции в год зависят от прироста производства в прошлом году () по сравнению с позапрошлым (): . Потребление в год зависит от выпуска продукции в прошлом году: . Таким образом: . Если положить , то разностное уравнение принимает вид: . Вид решения этого уравнения зависит от значений корней характеристического уравнения: . Если это уравнение имеет единственное решение, то . Если характеристическое уравнение имеет два различных корня ( и ), то . (Считать, что больше ) Если характеристическое уравнение имеет пару комплексно сопряжённых корней: , где – мнимая единица, то: . Коэффициенты и могут быть определены из начальных условий для и . 1001100,030,257 Найти значение , входящего в выражение для корней характеристического уравнения. Ответ введите с точностью до 4-го знака после запятой.
- # Произведённые в год товары () представлены потребительскими товарами () и инвестиционными (): . Инвестиции в год зависят от прироста производства в прошлом году () по сравнению с позапрошлым (): . Потребление в год зависит от выпуска продукции в прошлом году: . Таким образом: . Если положить , то разностное уравнение принимает вид: . Вид решения этого уравнения зависит от значений корней характеристического уравнения: . Если это уравнение имеет единственное решение, то . Если характеристическое уравнение имеет два различных корня ( и ), то . (Считать, что больше ) Если характеристическое уравнение имеет пару комплексно сопряжённых корней: , где – мнимая единица, то: . Коэффициенты и могут быть определены из начальных условий для и . 1001100,050,35 Найти значение коэффициента . Ответ введите с точностью до 1-го знака после запятой.
- # Задано линейное дифференциальное уравнение: . Известно, что: . Найти, при каком значении решение становится неустойчивым.
- # Производство на одного работающего (в модели Кобба-Дугласа) равно: . Оптимальная фондовооружённость с точки зрения максимума потребления на одного работающего равна . Здесь использованы следующие обозначения: – доля ВВП идущая на капитализацию; – годовой темп прироста числа занятых; – доля выбывших за год основных производственных фондов; – коэффициент. Фондовооружённость, ниже которой её рост происходит ускоренно . Пусть . Найти во сколько раз удельные инвестиции при больше, чем при . Ответ введите с точностью до 2-го знака после запятой.