Главная /
Математическая экономика /
Производство на одного работающего (в модели Кобба-Дугласа) равно: [формула]. Ответ введите с точностью до 2-го знака после запятой.
Производство на одного работающего (в модели Кобба-Дугласа) равно: . Оптимальная фондовооружённость с точки зрения максимума потребления на одного работающего равна . Здесь использованы следующие обозначения: – доля ВВП идущая на капитализацию; – годовой темп прироста числа занятых; – доля выбывших за год основных производственных фондов; – коэффициент. Фондовооружённость, ниже которой её рост происходит ускоренно . Пусть . Найти , если . Ответ введите с точностью до 2-го знака после запятой.
вопросПравильный ответ:
1,74
Сложность вопроса
93
Сложность курса: Математическая экономика
75
Оценить вопрос
Комментарии:
Аноним
Гранд мерси за помощь по intiut'у.
23 апр 2019
Аноним
Если бы не опубликованные ответы - я бы не смог решить c этими тестами intuit.
09 ноя 2018
Аноним
Спасибо за ответы интуит
18 окт 2018
Другие ответы на вопросы из темы математика интуит.
- # Производственная функция фирмы: . Известны цены на продукцию, капитал и рабочую силу: . Найти на сколько рублей увеличится прибыль при увеличении затрат на рабочую силу на 1 рубль. 1512230,5 Ответ введите с точностью до 3-го знака после запятой.
- # Пусть цена продукции на рынке зависит от объёмов её выпуска двумя фирмами () зависит следующим образом: . Издержки фирм равны: и . a12b4c0,5d1 Найти суммарную прибыль в случае монополии. Ответ введите с точностью до 2-го знака после запятой.
- # Предлагается следующая модель инфляции. Денежная масса () зависит от процентной ставки () следующим образом: . Производство определяется функцией Кобба-Дугласа: . Цены: , где и относятся к предыдущему периоду. Из следует . M80d100f2r10A1α0,5L1K7 Полагая прочие параметры неизменными, найти во сколько раз во второй период после изменения процентной ставки по сравнению с первым периодом после изменения процентной ставки изменится капитал, если процентная ставка уменьшится до 3. Ответ введите с точностью до 3-го знака после запятой.
- # Дана неоклассическая производственная функция: . Во сколько раз изменится , если и уменьшатся на 30%? Ответ введите с точностью до 2-го знака после запятой.
- # Произведённые в год товары () представлены потребительскими товарами () и инвестиционными (): . Инвестиции в год зависят от прироста производства в прошлом году () по сравнению с позапрошлым (): . Потребление в год зависит от выпуска продукции в прошлом году: . Таким образом: . Если положить , то разностное уравнение принимает вид: . Вид решения этого уравнения зависит от значений корней характеристического уравнения: . Если это уравнение имеет единственное решение, то . Если характеристическое уравнение имеет два различных корня ( и ), то . (Считать, что больше ) Если характеристическое уравнение имеет пару комплексно сопряжённых корней: , где – мнимая единица, то: . Коэффициенты и могут быть определены из начальных условий для и . 1001100,040,23 Найти значение дискриминанта характеристического уравнения. Ответ введите с точностью до 4-го знака после запятой.