Главная / Оптимизация приложений с использованием библиотеки Intel MKL / Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение alpha * B * A^(T), где A, B - матрицы, A - треугольная матрица, alpha - скаляр. В файле содержатся данные для вычислений: значение к

Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с двойной точностью выражение alpha * B * A^(T), где A, B - матрицы, A - треугольная матрица, alpha - скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha, размер (size) комплексной матрицы A, значения элементов нижнего треугольника (включая главную диагональ) матрицы A, размер (size) комплексной подматрицы B, позиция подматрицы B в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0], размер комплексной матрицы Q, значения элементов матрицы Q. В качестве ответа введите 8 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)

вопрос

Правильный ответ:

4175.5238
Сложность вопроса
76
Сложность курса: Оптимизация приложений с использованием библиотеки Intel MKL
49
Оценить вопрос
Очень сложно
Сложно
Средне
Легко
Очень легко
Комментарии:
Аноним
Пишет вам сотрудник деканата! Немедленно сотрите этот ваш сайт с ответами на интуит. Пожалуйста
29 окт 2020
Аноним
Если бы не опубликованные решения - я бы не справился c этими тестами интуит.
23 фев 2020
Оставить комментарий
Другие ответы на вопросы из темы программирование интуит.