Главная /
Оптимизация приложений с использованием библиотеки Intel MKL /
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с [формула] нормализацией. В исходном файле данных указана длина (1-е число, N) трансформируемого вектора и собственно трансформируем
Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет обратное преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число, N
) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)
вопрос
Правильный ответ:
48.940
Сложность вопроса
75
Сложность курса: Оптимизация приложений с использованием библиотеки Intel MKL
49
Оценить вопрос
Комментарии:
Аноним
Если бы не эти подсказки - я бы не осилил c этими тестами интуит.
06 май 2020
Аноним
Какой человек ищет данные вопросы по интуит? Это же очень просты вопросы
08 июн 2019
Аноним
Какой студент ищет эти тесты inuit? Это же очень просты вопросы
14 фев 2018
Другие ответы на вопросы из темы программирование интуит.
- # Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение alpha * x * y^(H) + y * (alpha * x)^(H) + A, где A - Эрмитова матрица, x, y - комплексные векторы, alpha - комплексный скаляр. В файле содержатся данные для вычислений: значение комплексного скаляра alpha, размер (size) комплексного вектора Х, шаг выборки (increment) элементов вектора x, значения элементов вектора X, размер (size) комплексного вектора Y, шаг выборки (increment) элементов вектора y, значения элементов вектора Y, размер (size) комплексной матрицы А, значения элементов нижнего треугольника (включая главную диагональ) матрицы A. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
- # Используя подходящую функцию из библиотеки Intel® MKL, напишите программу, которая вычисляет с одинарной точностью выражение alpha * A^(T) * B^(H) + beta * C, где A, B, C - комплексные матрицы, alpha, beta - комплексные скаляры. В файле содержатся данные для вычислений: значение комплексного скаляра alpha, значение комплексного скаляра beta, размер (size) комплексной подматрицы A, позиция подматрицы A в матрице M - индекс элемента матрицы M, соответствующего элементу A[0][0], размер комплексной матрицы M, значения элементов матрицы M, размер (size) комплексной подматрицы B, позиция подматрицы B в матрице Q - индекс элемента матрицы Q, соответствующего элементу B[0][0], размер комплексной матрицы Q, значения элементов матрицы Q, размер (size) комплексной подматрицы C, позиция подматрицы С в матрице R - индекс элемента матрицы R, соответствующего элементу C[0][0], размер комплексной матрицы R, значения элементов матрицы R. В качестве ответа введите 5 значащих цифр (с учётом округления) суммы модулей компонент полного результата (для числа - его модуль, для вектора - сумму модулей координат, для матрицы – сумму модулей элементов, с учётом неизменившихся в процессе вычислений компонент). Используйте "точку" в качестве десятичного разделителя. (Общие пояснения: данные в файле заданы в той точности, в которой требуется решить задачу; индексация векторов и матриц начинается с 0, то есть первый элемент вектора имеет индекс [0], а матрицы - [0][0]; если шаг выборки (increment) не задан, то он равен 1 по умолчанию; если данные об обрамляющей матрице не заданы, то по умолчанию обрамляющая матрица совпадает с подматрицей, необходимой для решения задачи; выборка всегда начинается с первого элемента вектора с индексом [0] или матрицы с индексом [0][0], если не указано другое; заглавными буквами обозначаются вектора, из которых нужно сделать выборку подвекторов, обозначаемых строчными буквами, для проведения вычислений, указанных в задаче; матрицы сохранены построчно; размер матрицы задан в формате количество строк на количество столбцов; выражение x^Т означает транспонирование; выражение А^(-1) означает обращение матрицы А; выражение А^(-T) означает транспонирование и обращение матрицы А; выражение x^H означает транспонирование и комплексное сопряжение; выражение A^(-H) означает транспонирование, комплексное сопряжение и обращение матрицы А.)
- # Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с одинарной точностью выражение y = alpha * A^-1 * x, где A - треугольная разреженная матрица, x, y - векторы,alpha - скаляр. Исходные данные содержатся в файле. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
- # Используя функции Intel® MKL SPARSE BLAS API, напишите программу, которая вычисляет с двойной точностью выражение y = alpha * A * B + beta * C, где A - Эрмитова разреженная комплексная матрица, B, C - комплексные матрицы, alpha, beta - комплексные скаляры. Исходные данные содержатся в файле. В ответ введите 8 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат, для матрицы – сумму модулей всех элементов). (Используйте "точку" в качестве десятичного разделителя.)
- # Используя функции Intel® MKL FFTW3, напишите программу, которая вычисляет прямое преобразование с одинарной точностью и с нормализацией. В исходном файле данных указана длина (1-е число, N) трансформируемого вектора и собственно трансформируемый вектор. В ответ введите 5 значащих цифр (с учётом округления) суммы модулей компонент результата (для вектора сумму модулей всех координат). (Используйте "точку" в качестве десятичного разделителя.)