Главная /
Математическая логика /
Пусть [таблица] [формула]
Пусть
1 | 0 |
Проверьте, истинно ли утверждение:
вопросПравильный ответ:
1
Сложность вопроса
90
Сложность курса: Математическая логика
74
Оценить вопрос
Комментарии:
Аноним
Экзамен сдал на 4 с минусом.!!!
21 мар 2020
Другие ответы на вопросы из темы математика интуит.
- # Пусть латинские буквы обозначают высказывания: A - общеутвердительное; E - общеотрицательное; O - частноотрицательное; I - частноутвердительное. Пусть известно, какими высказываниями являются большая и малая посылки силлогизма. Также известна фигура силлогизма: 1; 2; 3 или 4. Укажите в ответе, каким высказыванием является заключение: A; E; O; I (буквы латинские). Если заключение сделать для заданной фигуры силлогизма нельзя укажите в ответе латинскую букву X. Большая посылкаМалая посылкаФигура силлогизмаAA2
- # Пусть латинские буквы обозначают высказывания: A - общеутвердительное; E - общеотрицательное; O - частноотрицательное; I - частноутвердительное. Пусть известно, какими высказываниями являются большая и малая посылки силлогизма. Также известна фигура силлогизма: 1; 2; 3 или 4. Укажите в ответе, каким высказыванием является заключение: A; E; O; I (буквы латинские). Если заключение сделать для заданной фигуры силлогизма нельзя укажите в ответе латинскую букву X. Большая посылкаМалая посылкаФигура силлогизмаAE2
- # Как выглядит на языке кванторов утверждение: ""
- # Пусть 11 Проверьте, истинно ли утверждение:
- # Представьте формулу алгебры высказываний в дизъюнктивной нормальной форме: \neg X_1 \wedge X_2 \wedge (X_2 \to X_3)= \vee_{\alpha_1, \alpha_2, \alpha_3}(A_{\alpha_1, \alpha_2, \alpha_3}X_1^{\alpha_1} \wedge X_2^{\alpha_2} \wedge X_3^{\alpha_3})\\ \mbox{где}\; X^{\alpha}=\begin{cases} X, & \mbox{если}\; \alpha =1,\\ \neg X, & \mbox{если}\; \alpha =0 \end{cases} может принимать значения 0 или 1. В ответе приведите значение для 101