Главная /
Криптографические методы защиты информации /
Вычислить нелинейность булевой функции 00101110 от 3 переменных
Вычислить нелинейность булевой функции 00101110 от 3 переменных
вопросПравильный ответ:
2
Сложность вопроса
78
Сложность курса: Криптографические методы защиты информации
88
Оценить вопрос
Комментарии:
Аноним
Кто ищет данные тесты интуит? Это же совсем для даунов
08 июн 2019
Аноним
Экзамен сдал на зачёт.!!!
18 янв 2019
Аноним
Это очень легкий вопрос интуит.
13 сен 2017
Другие ответы на вопросы из темы безопасность интуит.
-
#
Зашифровать биграмму ЛИ с помощью матрицы
; вычисления проводить по модулю 33.
-
#
Для демонстрации качества алгоритма выберем два открытых текста, различающихся лишь одной перестановкой соседних букв, пусть это будут слова АТЛАНТ и ТАЛАНТ.
А 0 Б 1 В 2 Г 3
Д 4 Е 5 Ё 6 Ж 7
З 8 И 9 Й 10 К 11
Л 12 М 13 Н 14 О 15
П 16 Р 17 С 18 Т 19
У 20 Ф 21 Х 22 Ц 23
Ч 24 Ш 25 Щ 26 Ъ 27
Ы 28 Ь 29 Э 30 Ю 31
Я 32
Первое преобразование:
, где
- числовой эквивалент шифруемой биграммы. Биграмма АТ имеет эквивалент 0x33+19=19, биграмма ЛА имеет эквивалент 12x33+0=396, биграмма НТ - 14x33+19=481, биграмма ТА - 627. Вычисления дают: Вычисления дают: АТ->17x19+19=342=10x33+12->ЙЛ, ЛА->17x396+19(mod 332) =675119(mod 332)=217=6x33+19->ЁТ, НТ->17x481+19=8196=573=17x33+12->РЛ, ТА->17x627+19=10678=877=26x33+19->ЩТ и после первого преобразования получили тексты: ЙЛЁТРЛ и ЩТЁТРЛ. Второе преобразование: перестановка (462513), получаем: ТЛЛРЙЁ и ТЛТРЩЁ. Третье преобразование: разбиваем текст на триграммы и шифруем с помощью матрицы
. Триграмме ТЛЛ соответствует вектор
, результат зашифрования:
-> УДЬ, триграмме РЙЁ соответствует вектор
, результат зашифрования:
-> ДЖР и результатом зашифрования слова АТЛАНТ является шифртекст УДЬДЖР. Проведя вычисления аналогично, получим результат зашифрования слова ТАЛАНТ, это шифртекст ЪШГТЁА. Итак, АТЛАНТ->УДЬДЖР, ТАЛАНТ->ЪШГТЁА и мы видим, что между результатами зашифрования первого и второго слова нет связи, несмотря на совпадение букв с 3 по 6 в исходных словах. Применение разных типов преобразований к блокам разной длины (в первом преобразовании длина блока 2, во втором 1, в третьем 3) дало хороший результат. Зашифровать по данной схеме с теми же параметрами текст МИНУТА.
-
#
Два пользователя используют общий модуль N = 3431, но разные взаимно простые экспоненты
и
. Пользователи получили шифртексты
и
, которые были получены в результате зашифрования на экспонентах
и
соотетственно одного и того же сообщения. Найти исходное сообщение методом бесключевого чтения.
- # Проверить подлинность цифровой подписи Эль-Гамаля для полученного сообщения M = 1746. Параметры подписи: p = 59, g = 14, открытый ключ отправителя y = 47, значения цифровой подписи: r = 31; s = 56. Для получения хэш-суммы использовался второй учебный алгоритм хэширования.
- # Проверить подлинность цифровой подписи Эль-Гамаля для полученного сообщения M = 3629. Параметры подписи: p = 59, g = 14, открытый ключ отправителя y = 54, значения цифровой подписи: r = 56; s = 41. Для получения хэш-суммы использовался второй учебный алгоритм хэширования.