Главная / Введение в логику / Решить логическое уравнение F(x1,x2,x3,x4)=0. Где F: x1 | x2 & x3 ∧ !x4 ≡ !x1 | x2 & x4 В ответе указать число корней и в скобках первый набор, на котором достигается решение. Все возможные наборы (их 16) считаются упорядоченными и представляют дв

Решить логическое уравнение F(x1,x2,x3,x4)=0. Где F:

x1 | x2 & x3 ∧ !x4 ≡ !x1 | x2 & x4

В ответе указать число корней и в скобках первый набор, на котором достигается решение. Все возможные наборы (их 16) считаются упорядоченными и представляют двоичную запись чисел от 0 до 15, представленную двоичным словом длины 4: 0000, 0001, 0010 и т.д.

При указании набора запишите его как десятичное число.

Пример: Решить уравнение F(x1,x2,x3)=0,

где F:

x1|x2 & x3 ∧ !x1 ⇒ x2 ≡ !x1 | x2 & x3.

Ответ: 3(0)

Пояснение ответа: уравнение имеет 3 корня. Первый корень - набор 0002 = 010

вопрос

Правильный ответ:

6(1)
Сложность вопроса
69
Сложность курса: Введение в логику
49
Оценить вопрос
Очень сложно
Сложно
Средне
Легко
Очень легко
Комментарии:
Аноним
Большое спасибо за тесты по intuit.
10 июн 2017
Аноним
Я преподаватель! Немедленно заблокируйте сайт и ответы с интуит. Не ломайте образование
26 окт 2016
Оставить комментарий
Другие ответы на вопросы из темы школа интуит.