Главная /
Численные методы /
Задано уравнение [формула]; организовать его решение методом дихотомии на отрезке [1;4]. В ответе указать правую границу отрезка полученного после 6-ти делений. Ответ введите с точностью до 6-го знака после запятой (без округления).
Задано уравнение ; организовать его решение методом дихотомии на отрезке [1;4]. В ответе указать правую границу отрезка полученного после 6-ти делений. Ответ введите с точностью до 6-го знака после запятой (без округления).
вопросПравильный ответ:
1,609375
Сложность вопроса
90
Сложность курса: Численные методы
32
Оценить вопрос
Комментарии:
Аноним
Гранд мерси за гдз по intuit.
24 май 2019
Аноним
Если бы не данные ответы - я бы сломался c этими тестами intuit.
05 янв 2019
Другие ответы на вопросы из темы математика интуит.
- # Организуйте методом золотого сечения поиск минимума функции . Поиск организуйте на отрезке [-1200;1250]. В ответе укажите значение на левой границе интервала поиска на 4-м этапе деления отрезка. Ответ введите в виде целого числа без округления.
- # Организовать процесс поиска минимума функции градиентным методом. Шагом 0,1. Производные вычисляются аналитически. Поиск начать из точки (1;1). В ответе указать значение координаты , в которой будет находиться процесс оптимизации после 10-ти циклов. Ответ введите с точностью до 2-го знака после запятой (без округления).
- # Численно решить интегральное уравнение: , где . Использовать шаг . Решение получить на сетке: 0,00,10,20,30,40,50,60,70,8 Подсказка. Необходимо решить матричное уравнение: ; где . Где . Привести значение y(0,6). Ответ введите с точностью до 4-го знака после запятой (без округления).
- # Заданы значения двенадцати пар и . 11222233143054366276587298710941110212120 Подобрать методом наименьших квадратов эмпирическую формулу . В ответе указать значение . Ответ введите с точностью до 3-го знака после запятой (без округления).
- # Вычислить значение интеграла по формуле Симпсона (без разбиения отрезка). В ответе указать во сколько раз абсолютная погрешность этой формулы меньше чем у формулы "центральных" прямоугольников. Ответ округлить до целых.