Главная /
Численные методы /
Используя значения функции [формула] в точках [формула] построить интерполяционный многочлен [формула]. В ответе привести разницу между значением функции и значением многочлена в точке [формула]. Ответ введите с точностью до 3-го знака после запятой (без
Используя значения функции в точках и построить интерполяционный многочлен . В ответе привести разницу между значением функции и значением многочлена в точке . Ответ введите с точностью до 3-го знака после запятой (без округления).
вопросПравильный ответ:
-0,002
Сложность вопроса
43
Сложность курса: Численные методы
32
Оценить вопрос
Комментарии:
Аноним
Благодарю за ответы по интуит.
13 апр 2019
Аноним
Если бы не опубликованные решения - я бы не решил c этими тестами интуит.
21 мар 2016
Другие ответы на вопросы из темы математика интуит.
- # Вычислить значение многочлена Чебышева степени () при . Ответ введите с точностью до 4-го знака после запятой (без округления).
- # Организовать процесс поиска минимума функции методом покоординатного спуска. Шагом 0,01. Цикл спуска начинается со спуска по и завершается спуском по . Производные вычисляются численно. Спуск начать из точки (0,4;-1). В ответе указать значение координаты , в которой будет находиться процесс оптимизации после 30-ти циклов. Ответ введите с точностью до 2-го знака после запятой (без округления).
- # Организовать процесс поиска минимума функции методом покоординатного спуска. Шагом 0,01. Цикл спуска начинается со спуска по и завершается спуском по . Производные вычисляются численно. Спуск начать из точки (-0,6;1). В ответе указать значение координаты , в которой будет находиться процесс оптимизации после 100 циклов. Ответ введите с точностью до 2-го знака после запятой (без округления).
- # Дана симплекс таблица. Найти решение. PX1X2X3X4022103008601801-2-6000
- # Численно решить интегральное уравнение: , где . Использовать шаг . Решение получить на сетке: 0,00,10,20,30,40,50,60,70,8 Подсказка. Необходимо решить матричное уравнение: ; где . Где . Привести значение y(0,3). Ответ введите с точностью до 4-го знака после запятой (без округления).