Главная /
Логические нейронные сети /
Выберите по два диапазона возможной принадлежности показателей банка: δZ11= [0, 25), δZ12= [25, 50], δZ21= [0, 10), δZ22= [10, 25], δZ31= [0, 5), δZ32= [5, 10], δZ41= [0, 2), δZ42= [2, 5]. Постройте обученную совершенную логическую нейронную сеть, связав
Выберите по два диапазона возможной принадлежности показателей банка:
Постройте обученную совершенную логическую нейронную сеть, связав диапазоны принадлежности каждого эталонного банка со сферическими координатами точки, соответствующей этому банку на экране.
Банки-эталоны и их рейтинг:
Точки – банки в сферической системе координат: В1(3, 1900), В2(3, 3000), B3(7, 450), B4(8, 2500), B5(12, 2100), B6(11, 800)
.
Правильный ответ:
Сложность вопроса
79
Сложность курса: Логические нейронные сети
81
Оценить вопрос
Комментарии:
Аноним
Это очень не сложный тест intuit.
02 ноя 2018
Аноним
Я провалил сессию, почему я не углядел этот крутой сайт с ответами с тестами intuit раньше
30 окт 2018
Аноним
Благодарю за решениями по интуит.
05 июл 2018
Другие ответы на вопросы из темы искусственный интеллект и робототехника интуит.
- # Для варианта логического описания системы принятия решений (СПР) при игре в "железнодорожную рулетку" (Лекция 9) постройте электронную схему СПР на данной логической матрице, отображающей некоторую регулярную структуру связей внутри множества логических элементов. Оставленные связи говорят об использовании предусмотренных "проводочков", остальные "проводочки" "перекушены". (A1∨A2)∧ (B1∨A2)∧ (A1∨ B2)∧ (B1∨ B2) → R1, (A1∧B2) → R2, (A2∧B1) → R3. Логическая матрица имеет вид: [Большая Картинка]
- # Найдите рекомендуемые решения с помощью нейронной сети для комбинаций достоверных значений исходных данных (по эталонным ситуациям). Используйте понятие исчерпывающего множества событий. Используйте передаточную функцию \begin{array}{l} V=\sum_j V_j \\ V_i = \left \{ \begin{array}{ll} V, & \mbox{если } V \ge h \\ 0, & \mbox{в противном случае} \end{array}\right \end{array} Установите правильность "работы" нейронной сети. Если сеть "работает" неправильно, попытайтесь проанализировать причину. Нейронная сеть имеет вид: [Большая Картинка] (Указаны пороги "конъюнкторов")
- # Используя приведенные ниже рисунок, и соответствующую ему нейронную сеть, рассчитайте маршруты следования из центрального пункта по заданным координатам пункта назначения. Воспользуйтесь передаточной функцией: [Большая Картинка] [Большая Картинка] Координаты пункта назначения (-50, -150).
- # В перспективе своих самостоятельных исследований составьте модель программы игры в "крестики – нолики", первоначально ограничившись попыткой сведения игры "в ничью". Начните разработку модели с анализа возможных ходов противника и с выбора предпочтительного ответа. Для этого заведите три строки, каждая из которых содержит три позиции. В текущем состоянии игры позиция может содержать "крестик" (противника), "нолик" (Ваш) или быть свободной. Несомненно, "традиционный" программный, последовательный анализ каждой позиции всех строк трудоемок и долог. Ассоциативный принцип "работы" нейронной сети позволяет приблизить его к ассоциативному мышлению игрока и сделать игровую нейрокомпьютерную приставку к персональному компьютеру. Составьте проект такой нейронной сети. Определите, является ли создаваемая нейронная сеть совершенной? Какую передаточную функцию Вы хотите использовать? Необходима ли коррекция весов и порогов?
- # Представьте основные соображения по организации факторного пространства для выполнения главных функций реагирующих объектов. Реагирующий объект выполняет функции контроля состояния сложной управляющей системы.