Главная /
Математическая экономика /
Пусть объём производства ([формула]) Ответ введите с точностью до 2-го знака после запятой.
Пусть объём производства () определяется функцией Кобба-Дугласа: . При этом инвестируется доля продукта, совпадающая с показателем степени . , где: – капитал, – инвестиции, – год, – лаг инвестирования. Считать и постоянными. Найти отношение объёмов капитала при для и . () Ответ введите с точностью до 2-го знака после запятой.
вопросПравильный ответ:
0,90
Сложность вопроса
84
Сложность курса: Математическая экономика
75
Оценить вопрос
Комментарии:
Аноним
Большое спасибо за тесты по intiut'у.
02 июл 2018
Аноним
спасибо
28 ноя 2017
Другие ответы на вопросы из темы математика интуит.
- # Производственная функция фирмы: . Известны цены на продукцию, капитал и рабочую силу: . Найти во сколько раз затраты на увеличение капитала эффективнее увеличения затрат на рабочую силу (с точки зрения увеличения производства). 11558230,5 Ответ введите с точностью до 3-го знака после запятой.
- # Пусть производство инвестиционных товаров () зависит от нормы процента () линейно: . Производство () определяется функцией Коба-Дугласа , (-занятая рабочая сила, – используемый капитал). , где – производство потребительских товаров. . Отсюда . (Считать =0,5.) 10,10,410,023 На сколько процентов уменьшится количество занятых, если составит 2? Ответ введите с точностью до 1-го знака после запятой.
- # Произведённые в год товары () представлены потребительскими товарами () и инвестиционными (): . Инвестиции в год зависят от прироста производства в прошлом году () по сравнению с позапрошлым (): . Потребление в год зависит от выпуска продукции в прошлом году: . Таким образом: . Если положить , то разностное уравнение принимает вид: . Вид решения этого уравнения зависит от значений корней характеристического уравнения: . Если это уравнение имеет единственное решение, то . Если характеристическое уравнение имеет два различных корня ( и ), то . (Считать, что больше ) Если характеристическое уравнение имеет пару комплексно сопряжённых корней: , где – мнимая единица, то: . Коэффициенты и могут быть определены из начальных условий для и . 1001100,040,23 Найти значение коэффициента . Ответ введите с точностью до 1-го знака после запятой.
- # Задано дифференциальное уравнение . Найти его решение при условии . Ответ введите с точностью до 2-го знака после запятой.
- # Производство на одного работающего (в модели Кобба-Дугласа) равно: . Оптимальная фондовооружённость с точки зрения максимума потребления на одного работающего равна . Здесь использованы следующие обозначения: – доля ВВП идущая на капитализацию; – годовой темп прироста числа занятых; – доля выбывших за год основных производственных фондов; – коэффициент. Фондовооружённость, ниже которой её рост происходит ускоренно . Пусть . Найти во сколько раз потребление на одного занятого при больше, чем при . Ответ введите с точностью до 2-го знака после запятой.