Главная /
Математическая экономика /
В экономике три сектора. Известна матрица межотраслевых связей: [таблица] Производство по отраслям составляет: [таблица] Найти конечное потребление.
В экономике три сектора. Известна матрица межотраслевых связей:
0,1 | 0,3 | 0,15 |
0,2 | 0,1 | 0,1 |
0,05 | 0,2 | 0,2 |
5 |
7 |
9 |
Правильный ответ:
1,05 |
4,4 |
5,55 |
4,3 |
2,9 |
1,1 |
3,15 |
4,8 |
0,1 |
Сложность вопроса
57
Сложность курса: Математическая экономика
75
Оценить вопрос
Комментарии:
Аноним
Если бы не эти ответы - я бы не решил c этими тестами интуит.
17 мар 2020
Другие ответы на вопросы из темы математика интуит.
- # Пусть спрос () и предложение () линейные функции цены (): d=a-bp; s=\alpha-\beta p. Скорость изменения цены: . Решение этого уравнения имеет вид: . 632311 Найти цену (в долях от равновесной цены) через 3 постоянные времени. Ответ введите с точностью до 3-го знака после запятой.
- # Пусть производство инвестиционных товаров () зависит от нормы процента () линейно: . Производство () определяется функцией Коба-Дугласа , (-занятая рабочая сила, – используемый капитал). , где – производство потребительских товаров. . Отсюда . (Считать =0,5.) 10,10,410,023 На сколько процентов уменьшится количество занятых, если составит 2,5? Ответ введите с точностью до 1-го знака после запятой.
- # Пусть цена продукции на рынке зависит от объёмов её выпуска двумя фирмами () зависит следующим образом: . Издержки фирм равны: и . a12b4c0,5d1 Найти выпуск продукции в случае неравновесия Стакельберга. Ответ введите с точностью до 2-го знака после запятой.
- # Произведённые в год товары () представлены потребительскими товарами () и инвестиционными (): . Инвестиции в год зависят от прироста производства в прошлом году () по сравнению с позапрошлым (): . Потребление в год зависит от выпуска продукции в прошлом году: . Таким образом: . Если положить , то разностное уравнение принимает вид: . Вид решения этого уравнения зависит от значений корней характеристического уравнения: . Если это уравнение имеет единственное решение, то . Если характеристическое уравнение имеет два различных корня ( и ), то . Если характеристическое уравнение имеет пару комплексно сопряжённых корней: , где – мнимая единица, то: . Коэффициенты и могут быть определены из начальных условий для и . 1001100,010,23 Найти значение коэффициента . Ответ введите с точностью до 1-го знака после запятой.
- # Пусть объём производства () определяется функцией Кобба-Дугласа: . При этом инвестируется доля продукта, совпадающая с показателем степени . , где: – капитал, – инвестиции, – год, – лаг инвестирования. Считать и постоянными. Найти отношение объёмов капитала при для и . () Ответ введите с точностью до 2-го знака после запятой.