Главная /
Дифференциальные уравнения и краевые задачи /
Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:[формула]. [таблица] Показать, что решение имеет вид:[формула]. В ответе указать значение [ф
Задана краевая задача: Для дифференциального уравнения:.
a0 | 2 |
a1 | 3 |
b0 | 4 |
b1 | 1 |
a | 0 |
b | |
A | 26 |
B | 22 |
k | 4 |
Правильный ответ:
4
Сложность вопроса
83
Сложность курса: Дифференциальные уравнения и краевые задачи
58
Оценить вопрос
Комментарии:
Аноним
Я помощник профессора! Срочно удалите сайт и ответы на интуит. Умоляю
17 янв 2020
Другие ответы на вопросы из темы математика интуит.
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a07a14b06b12a0bA129B82k16 Показать, что решение имеет вид:. В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p3q12A4B6 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a2b3 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дано характеристическое уравнение: a03a14a25a32a44a51a62a76a89a97 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-7a127a21-4a224 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наибольшего из корней характеристического уравнения.