Главная /
Дифференциальные уравнения и краевые задачи
Дифференциальные уравнения и краевые задачи - ответы на тесты Интуит
Курс лекций посвящен изложению методов и теории дифференциальных уравнений и краевых задач.
Список вопросов:
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами: , где a72b60c10f12g5 Найти решение с помощью подстановки:. Показать, что решение имеет вид:. В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a288b168c13f24g7 Найти решение с помощью подстановки:. Показать, что решение имеет вид:. В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a648b108c27f36g3 Найти решение с помощью подстановки:. Показать, что решение имеет вид:. В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a72b60c10f12g5 Найти решение с помощью подстановки:. Показать, что решение имеет вид:. В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a288b168c13f24g7 Найти решение с помощью подстановки:. Показать, что решение имеет вид:. В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a648b108c27f36g3 Найти решение с помощью подстановки:. Показать, что решение имеет вид:. В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a72b60c10f12g5 Найти решение с помощью подстановки:. Показать, что решение имеет вид:. В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a288b168c13f24g7 Найти решение с помощью подстановки:. Показать, что решение имеет вид:. В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a648b108c27f36g3 Найти решение с помощью подстановки:. Показать, что решение имеет вид:. В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a72b60c10f12g5 Найти решение с помощью подстановки:. Показать, что решение имеет вид:. В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a288b168c13f24g7 Найти решение с помощью подстановки:. Показать, что решение имеет вид:. В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a648b108c27f36g3 Найти решение с помощью подстановки:. Показать, что решение имеет вид:. В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a288b48c8f24g2 Найти решение с помощью подстановки:. Показать, что решение имеет вид:, где . В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a648b108c17f36g3 Найти решение с помощью подстановки:. Показать, что решение имеет вид:, . В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a72b12c-3f12g1 Найти решение с помощью подстановки:. Показать, что решение имеет вид:, где . В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a288b48c8f24g2 Найти решение с помощью подстановки:. Показать, что решение имеет вид:, где . В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a648b108c17f36g3 Найти решение с помощью подстановки:. Показать, что решение имеет вид:, где . В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a72b12c-3f12g1 Найти решение с помощью подстановки:. Показать, что решение имеет вид:, где . В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a288b48c8f24g2 Найти решение с помощью подстановки:. Показать, что решение имеет вид:, где . В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a648b108c17f36g3 Найти решение с помощью подстановки:. Показать, что решение имеет вид:, где . В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a72b12c-3f12g1 Найти решение с помощью подстановки:. Показать, что решение имеет вид:, где . В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a288b48c8f24g2 Найти решение с помощью подстановки:. Показать, что решение имеет вид:, где . В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a648b108c17f36g3 Найти решение с помощью подстановки: . Показать, что решение имеет вид:, где . В ответе укажите значение .
- # Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где a72b12c-3f12g1 Найти решение с помощью подстановки:. Показать, что решение имеет вид:, где . В ответе укажите значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a02a13b04b11a0bA26B22k4 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a03a11b07b16a0bA27B-85k9 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a07a14b06b12a0bA129B82k16 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a02a13b04b11a0bA26B22k4 Показать, что решение имеет вид:. В ответе указать значение , удовлетворяющее краевой задаче.
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a03a11b07b16a0bA27B-85k9 Показать, что решение имеет вид:. В ответе указать значение , удовлетворяющее краевой задаче.
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a07a14b06b12a0bA129B82k16 Показать, что решение имеет вид:. В ответе указать значение , удовлетворяющее краевой задаче.
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a02a13b04b11a0bA26B22k4 Показать, что решение имеет вид:. В ответе указать значение , удовлетворяющее краевой задаче.
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a03a11b07b16a0bA27B-85k9 Показать, что решение имеет вид:. В ответе указать значение , удовлетворяющее краевой задаче.
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a07a14b06b12a0bA129B82k16 Показать, что решение имеет вид:. В ответе указать значение , удовлетворяющее краевой задаче.
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a02a13b04b11a0bA26B22k4 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a03a11b07b16a0bA27B-85k9 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a07a14b06b12a0bA129B82k16 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a02a13b04b11a0bA26B22k4 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a03a11b07b16a0bA27B-85k9 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a07a14b06b12a0bA129B82k16 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a02a13b04b11a0bA26B22k4 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a03a11b07b16a0bA27B-85k9 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a07a14b06b12a0bA129B82k16 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a02a13b04b11a0bA26B22k4 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a03a11b07b16a0bA27B-85k9 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a07a14b06b12a0bA129B82k16 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a02a13b04b11a0bA26B22k4 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a03a11b07b16a0bA27B-85k9 Показать, что решение имеет вид:. В ответе указать значение .
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a07a14b06b12a0bA129B82k16 Показать, что решение имеет вид:. В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p3q12A4B6 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p6q96A8B24 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p7q175A12B25 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p3q12A4B6 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p6q96A8B24 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p7q175A12B25 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p3q12A4B6 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p6q96A8B24 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p7q175A12B25 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p3q12A4B6 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p6q96A8B24 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p7q175A12B25 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p3q12A4B6 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение . В ответе привести три цифры после десятичной запятой.
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p6q96A8B24 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение . В ответе привести три цифры после десятичной запятой.
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p7q175A12B25 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение . В ответе привести три цифры после десятичной запятой.
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p3q12A4B6 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать, сколько корней имеет решение в диапазоне .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p6q96A8B24 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать, сколько корней имеет решение в диапазоне
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p7q175A12B25 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать, сколько корней имеет решение в диапазоне .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p3q12A4B6 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать, сколько корней имеет решение в диапазоне .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p6q96A8B24 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать, сколько корней имеет решение в диапазоне .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p7q175A12B25 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать, сколько корней имеет решение в диапазоне .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p3q12A4B6 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать, сколько корней имеет решение в диапазоне .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p6q96A8B24 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать, сколько корней имеет решение в диапазоне .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p7q175A12B25 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать, сколько корней имеет решение в диапазоне .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a3b5 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a2b3 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a1b4 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a3b5 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a2b3 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a1b4 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a3b5 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a2b3 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a1b4 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a3b5 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a2b3 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a1b4 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a3b5 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a2b3 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a1b4 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a3b5 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение , если: A12B3
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a2b3 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение , если: A14B2
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a1b4 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение , если: A10B4
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a3b5 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение , если: A6B9
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a2b3 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение , если: A12B3
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a1b4 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение , если: A9B2
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a3b5 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение , если: A3B8
- # Дана система дифференциальных уравнений: a2b3 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение , если: A7B5
- # Дана система дифференциальных уравнений: a1b4 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение , если: A8B3
- # Дано характеристическое уравнение: a03a14a25a32a44a51a62a76a89a97 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a01a15a23a36a47a52a64a78a83a92 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a06a17a28a33a42a55a66a77a85a99 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a03a14a25a32a44a51a62a76a89a97 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a01a15a23a36a47a52a64a78a83a92 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a06a17a28a33a42a55a66a77a85a99 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a03a14a25a32a44a51a62a76a89a97 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a01a15a23a36a47a52a64a78a83a92 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a06a17a28a33a42a55a66a77a85a99 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a03a14a25a32a44a51a62a76a89a97 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Условия. Дано характеристическое уравнение: a01a15a23a36a47a52a64a78a83a92 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a06a17a28a33a42a55a66a77a85a99 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a03a14a25a32a44a51a62a76a89a97 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a01a15a23a36a47a52a64a78a83a92 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a06a17a28a33a42a55a66a77a85a99 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a03a14a25a32a44a51a62a76a89a97 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a01a15a23a36a47a52a64a78a83a92 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a06a17a28a33a42a55a66a77a85a99 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a03a14a25a32a44a51a62a76a89a97 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a01a15a23a36a47a52a64a78a83a92 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a06a17a28a33a42a55a66a77a85a99 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a03a14a25a32a44a51a62a76a89a97 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a01a15a23a36a47a52a64a78a83a92 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дано характеристическое уравнение: a06a17a28a33a42a55a66a77a85a99 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-8a124a21-12a226 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение дискриминанта характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-15a123a21-60a2212 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение дискриминанта характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-7a127a21-4a224 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение дискриминанта характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-8a124a21-12a226 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наименьшего из корней характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-15a123a21-60a2212 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наименьшего из корней характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-7a127a21-4a224 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наименьшего из корней характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-8a124a21-12a226 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наибольшего из корней характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-15a123a21-60a2212 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наибольшего из корней характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-7a127a21-4a224 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наибольшего из корней характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-13a124a21-22a226 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение дискриминанта характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-19a123a21-80a2212 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение дискриминанта характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-11a127a21-8a224 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение дискриминанта характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-7a127a21-4a224 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наименьшего из корней характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-19a123a21-80a2212 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наименьшего из корней характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-11a127a21-8a224 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наименьшего из корней характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-7a127a21-4a224 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наибольшего из корней характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-19a123a21-80a2212 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наибольшего из корней характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-11a127a21-8a224 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наибольшего из корней характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a1114a124a21-4a226 Найдите дискриминант характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-6a123a21-27a2212 Найдите дискриминант характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a114a127a210a224 Найдите дискриминант характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a1114a124a21-4a226 Определите кратность корней характеристического уравнения (1 или 2).
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-6a123a21-27a2212 Определите кратность корней характеристического уравнения (1 или 2).
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a114a127a210a224 Определите кратность корней характеристического уравнения (1 или 2).
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a1114a124a21-4a226 Найдите корень характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-6a123a21-27a2212 Найдите корень характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a114a127a210a224 Найдите корень характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a1114a124a21-4a226 Определите устойчиво (1) или неустойчиво (2) решение системы в начале координат.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. Определите устойчиво (1) или неустойчиво (2) решение системы в начале координат. a11-6a123a21-27a2212
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a114a127a210a224 Определите устойчиво (1) или неустойчиво (2) решение системы в начале координат.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-26a124a21-64a226 Найдите дискриминант характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-18a123a21-75a2212 Найдите дискриминант характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-10a127a21-7a224 Найдите дискриминант характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-26a124a21-64a226 Определите кратность корней характеристического уравнения (1 или 2).
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-18a123a21-75a2212 Определите кратность корней характеристического уравнения (1 или 2).
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-10a127a21-7a224 Определите кратность корней характеристического уравнения (1 или 2).
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-26a124a21-64a226 Найдите корень характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-18a123a21-75a2212 Найдите корень характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-10a127a21-7a224 Найдите корень характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-26a124a21-64a226 Определите устойчиво (1) или неустойчиво (2) решение системы в начале координат.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-18a123a21-75a2212 Определите устойчиво (1) или неустойчиво (2) решение системы в начале координат.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-10a127a21-7a224 Определите устойчиво (1) или неустойчиво (2) решение системы в начале координат.