Главная /
Дифференциальные уравнения и краевые задачи /
Дана задача Коши для дифференциального уравнения: [формула] \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. [таблица] Показать, что решение имеет вид: [формула] А также, что решение может быть представлено в виде: [формула] Найти скольк
Дана задача Коши для дифференциального уравнения:
p | 7 |
q | 175 |
A | 12 |
B | 25 |
Правильный ответ:
10
Сложность вопроса
52
Сложность курса: Дифференциальные уравнения и краевые задачи
58
Оценить вопрос
Комментарии:
Аноним
Экзамен сдал на пять с минусом. Спасибо vtone
27 май 2019
Другие ответы на вопросы из темы математика интуит.
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p3q12A4B6 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p3q12A4B6 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать, сколько корней имеет решение в диапазоне .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a2b3 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a2b3 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение .
- # Дано характеристическое уравнение: a06a17a28a33a42a55a66a77a85a99 Составить матрицу Гурвица и вычислить значение главного диагонального минора .