Главная /
Разностные уравнения и задача Коши /
[формула] , где [формула] – произвольные постоянные. Задано что: [таблица] [формула].
Общее решение некого дифференциального уравнения в частных производных имеет вид: , где – произвольные постоянные.
Задано что:
2 | 3 | 166 |
3 | 4 | 408 |
4 | 5 | 814 |
2 | 2 | 100 |
3 | 5 | 566 |
4 | 6 | 1066 |
5 | 7 | 1794 |
6 | 3 | 782 |
Найти значения постоянных. В ответе указать значение .
вопросПравильный ответ:
2
Сложность вопроса
86
Сложность курса: Разностные уравнения и задача Коши
75
Оценить вопрос
Комментарии:
Аноним
Экзамен сдал на зачёт. Спасибо vtone
11 мар 2020
Аноним
Это очень нехитрый тест intuit.
20 сен 2018
Аноним
Какой студент гуглит данные тесты по интуит? Это же легко
13 сен 2018
Другие ответы на вопросы из темы физика интуит.
- # Общее решение некого дифференциального уравнения в частных производных имеет вид: , где – произвольные постоянные. Задано что: 233073471745139122174351004461828573014631223 Найти значения постоянных. В ответе указать значение .
- # Произведенные в год товары представлены потребительскими товарами и инвестиционными . Инвестиции в год зависят от прироста производства в прошлом году по сравнению с позапрошлым . Потребление в год зависит от выпуска продукции в прошлом году: . Таким образом: . Если положить , то разностное уравнение принимает вид: . Вид решения этого уравнения зависит от значений корней характеристического уравнения: . Если это уравнение имеет единственное решение, то Если характеристическое уравнение имеет два различных корня ( и ), то . (Считать, что больше .) Если характеристическое уравнение имеет пару комплексно сопряженных корней: , где – мнимая единица, то: . Коэффициенты и могут быть определены из начальных условий для и . 1001100,050,35 Найти значение модуля корней характеристического уравнения. В ответе привести четыре знака после запятой.
- # Произведенные в год товары представлены потребительскими товарами и инвестиционными . Инвестиции в год зависят от прироста производства в прошлом году по сравнению с позапрошлым . Потребление в год зависит от выпуска продукции в прошлом году: . Таким образом: . Если положить , то разностное уравнение принимает вид: . Вид решения этого уравнения зависит от значений корней характеристического уравнения: . Если это уравнение имеет единственное решение, то Если характеристическое уравнение имеет два различных корня ( и ), то . (Считать, что больше .) Если характеристическое уравнение имеет пару комплексно сопряженных корней: , где – мнимая единица, то: . Коэффициенты и могут быть определены из начальных условий для и . 1001100,050,35 Найти значение , входящего в выражение для корней характеристического уравнения. В ответе привести четыре знака после запятой.
- # Произведенные в год товары представлены потребительскими товарами и инвестиционными . Инвестиции в год зависят от прироста производства в прошлом году по сравнению с позапрошлым . Потребление в год зависит от выпуска продукции в прошлом году: . Таким образом: . Если положить , то разностное уравнение принимает вид: . Вид решения этого уравнения зависит от значений корней характеристического уравнения: . Если это уравнение имеет единственное решение, то Если характеристическое уравнение имеет два различных корня ( и ), то . (Считать, что больше .) Если характеристическое уравнение имеет пару комплексно сопряженных корней: , где – мнимая единица, то: . Коэффициенты и могут быть определены из начальных условий для и . 1001100,050,35 Найти значение коэффициента . В ответе привести один знак после запятой.
- # Произведенные в год товары представлены потребительскими товарами и инвестиционными . Инвестиции в год зависят от прироста производства в прошлом году по сравнению с позапрошлым . Потребление в год зависит от выпуска продукции в прошлом году: . Таким образом: . Если положить , то разностное уравнение принимает вид: . Вид решения этого уравнения зависит от значений корней характеристического уравнения: . Если это уравнение имеет единственное решение, то Если характеристическое уравнение имеет два различных корня ( и ), то . (Считать, что больше .) Если характеристическое уравнение имеет пару комплексно сопряженных корней: , где – мнимая единица, то: . Коэффициенты и могут быть определены из начальных условий для и . 1001100,040,23 Найти значение . В ответе привести один знак после запятой.