Главная /
Численные методы /
Численно решить интегральное уравнение: [формула], где [формула]. Использовать шаг [формула]. Решение получить на сетке: [таблица] Подсказка. Необходимо решить матричное уравнение: [формула]; где [формула]. Где [формула]. Привести значение y(0,5). Ответ в
Численно решить интегральное уравнение: , где . Использовать шаг . Решение получить на сетке:
0,0 |
0,1 |
0,2 |
0,3 |
0,4 |
0,5 |
0,6 |
0,7 |
0,8 |
Правильный ответ:
0,1842
Сложность вопроса
77
Сложность курса: Численные методы
32
Оценить вопрос
Комментарии:
Аноним
Зачёт всё. Иду выпивать отмечать экзамен intuit
02 янв 2020
Аноним
Это очень элементарный тест по интуиту.
11 ноя 2018
Другие ответы на вопросы из темы математика интуит.
- # Решить методом Гаусса-Зейделя систему линейных алгебраических уравнений заданных матрицей левой части и столбцом свободных членов. В ответе указать сумму корней. В Качестве нулевого приближения использовать значения корней заданных в таблице: 630 3768714558468106
- # Организовать поиск решения системы уравнений методом простой итерации. Поиск начать с точки . В ответе указать значение после трёх итераций. Ответ введите с точностью до 3-го знака после запятой (без округления).
- # Задано уравнение ; организовать его решение методом дихотомии на отрезке [1;4]. В ответе указать координату середины отрезка полученного после 14-ти делений. Ответ введите с точностью до 5-го знака после запятой (без округления).
- # Используя значения функции в точках и построить интерполяционный многочлен . В ответе привести значение . Ответ введите с точностью до 3-го знака после запятой (без округления).
- # Дана сетка значений , где принимает значения 0; 1; 2; 3; 4; 5; 6; 7; 8. Построить многочлен Лагранжа для и вычислить значение многочлена Лагранжа в точке , где . В ответе указать относительную погрешность приближения функции в процентах. Ответ введите с точностью до 9-го знака после запятой (без округления).