Главная /
Численные методы /
Задано уравнение [формула]; организовать его решение методом дихотомии на отрезке [1;4]. В ответе указать значение левой части уравнения в середине отрезка полученного после 6-ти делений. Ответ введите с точностью до 3-го знака после запятой (без округлен
Задано уравнение ; организовать его решение методом дихотомии на отрезке [1;4]. В ответе указать значение левой части уравнения в середине отрезка полученного после 6-ти делений. Ответ введите с точностью до 3-го знака после запятой (без округления).
вопросПравильный ответ:
-0,395
Сложность вопроса
79
Сложность курса: Численные методы
32
Оценить вопрос
Комментарии:
Аноним
Это очень простой вопрос intuit.
25 авг 2019
Другие ответы на вопросы из темы математика интуит.
- # Организуйте методом золотого сечения поиск минимума функции . Поиск организуйте на отрезке [-1200;1250]. В ответе укажите значение на правой границе интервала поиска на 30-м этапе деления отрезка. Ответ введите с точностью до 6-го знака после запятой (без округления).
- # Организовать процесс поиска минимума функции методом покоординатного спуска. Шагом 0,1. Цикл спуска начинается со спуска по и завершается спуском по . Производные вычисляются численно. Спуск начать из точки (1;1). В ответе указать значение координаты , в которой будет находиться процесс оптимизации после 20-ти циклов. Ответ введите с точностью до 1-го знака после запятой (без округления).
- # Численно решить интегральное уравнение: , где . Использовать шаг . Решение получить на сетке: 0,00,10,20,30,40,50,60,70,8 Подсказка. Необходимо решить матричное уравнение: ; где . Где . Привести значение y(0,5). Ответ введите с точностью до 4-го знака после запятой (без округления).
- # Вычислить значение интеграла по формуле Симпсона (без разбиения отрезка). В ответе указать во сколько раз абсолютная погрешность этой формулы меньше чем у формулы трапеций. Ответ округлить до целых.
- # Вычислить значение интеграла по формуле Симпсона (без разбиения отрезка). В ответе указать во сколько раз относительная погрешность этой формулы меньше чем у формулы "центральных" прямоугольников. Ответ округлить до целых.