Главная /
Алгоритмы интеллектуальной обработки больших объемов данных /
Укажите достоинства алгоритма AdaBoots:
Укажите достоинства алгоритма AdaBoots:
вопросПравильный ответ:
Простота
Склонен к переобучению при наличии шума в данных
Имеет хорошую обобщающую способность
Переобучается при малом количестве данных
Сложность вопроса
92
Сложность курса: Алгоритмы интеллектуальной обработки больших объемов данных
67
Оценить вопрос
Комментарии:
Аноним
Зачёт всё. Лечу кутить отмечать зачёт интуит
23 июн 2018
Аноним
Это очень намудрённый решебник по интуиту.
23 фев 2018
Другие ответы на вопросы из темы алгоритмы и дискретные структуры интуит.
- # Дан единичный квадрат с координатами вершин (0;0), (0;1), (1;1), (1;0). При этом первая и третья вершины относятся к классу "-1", а вторая и четвертая – "1". Требуется построить классификатор, получающий на входе координату вершины, а на выходе дающий метку класса (задача XOR). Функция потерь определяется числом неправильно классифицированных вершин с учетом их веса. В результате применения алгоритма AdaBoost были построены три модели со следующими разделяющими границами: (1) прямая, проходящая через точки (1/2;0) и (0;1/2), (2) прямая, проходящая через точки (1/2;1) и (1;1/2), (3) прямая, проходящая через точки (1/2;1) и (0;1/2). Изначально веса вершин одинаковы и равны 1/4, далее они пересчитываются в соответствии с алгоритмом. Укажите получившиеся веса первой, второй и третьей модели соответственно:
- # Имеется стохастическая нейронная сеть ограниченная машина Больцмана (restricted Boltzmann machine - RBM) с возможными состояниями нейронов 1/0. Рассмотрим видимый нейрон i с состоянием Vi и скрытый нейрон j с состоянием Hj. Для определения изменения весов применим алгоритм Contrastive Divergence. Найдено следующее соответствие состояний нейронов для 6 моментов времени. t=0: Vi=0, Hj=1; t=1: Vi=1, Hj=1; t=2: Vi=0, Hj=1; t=3: Vi=1, Hj=1; t=4: Vi=0, Hj=0; t=5: Vi=1, Hj=1. Постройте 2 статистики для вычисления математических ожиданий произведений состояний нейронов i и j: одна из них (позитивная фаза) является средним из 6 чисел, другая (негативная фаза) - из 5. Найдите величину необходимого изменения веса связи между нейронами i и j, если параметр скорости обучения равен 0,4. Ответ укажите с точностью до двух знаков после запятой:
- # Продолжите фразу "Машина Больцмана - стохастический генеративный…"
- # Назовите типы моделей классификации в порядке убывания сложности
- # Даны три обучающих примера (x1,x2): (0;4), (0;-4), (4;-4), первый относится к классу "1", второй и третий – к классу "-1". Постройте решающую границу методом опорных векторов (SVM). В качестве тестовых возьмите примеры A(-1;-1), B(-1;1), C(1;1), D(1;-1), первые два относятся к классу "-1", вторые два – к "1". Укажите, какие тестовые примеры подтверждают решающую границу.