Главная /
Дифференциальные уравнения и краевые задачи /
Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ [таблица] Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_
Дана система дифференциальных уравнений:
a | 1 |
b | 4 |
Правильный ответ:
1
Сложность вопроса
92
Сложность курса: Дифференциальные уравнения и краевые задачи
58
Оценить вопрос
Комментарии:
Аноним
Спасибо за помощь по intiut'у.
24 май 2019
Аноним
Спасибо за ответы по интуиту.
21 апр 2018
Другие ответы на вопросы из темы математика интуит.
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p6q96A8B24 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать значение .
- # Дана задача Коши для дифференциального уравнения: \left\{ \begin{array}{ll} y(0)=A;\\ y'(0)=B;\\ \end{array} \right. p6q96A8B24 Показать, что решение имеет вид: А также, что решение может быть представлено в виде: Найти сколько корней имеет решение в диапазоне и и . В ответе указать, сколько корней имеет решение в диапазоне
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-15a123a21-60a2212 Рассмотрите фазовую плоскость:, где ( – корни характеристического уравнения системы). В ответе указать значение наименьшего из корней характеристического уравнения.
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-26a124a21-64a226 Определите кратность корней характеристического уравнения (1 или 2).
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a11-18a123a21-75a2212 Определите устойчиво (1) или неустойчиво (2) решение системы в начале координат.