Главная /
Численные методы /
Организовать процесс поиска минимума функции [формула] методом покоординатного спуска. Шагом 0,1. Цикл спуска начинается со спуска по [формула] и завершается спуском по [формула]. Производные вычисляются численно. Спуск начать из точки (1;1). В ответе ука
Организовать процесс поиска минимума функции методом покоординатного спуска. Шагом 0,1. Цикл спуска начинается со спуска по и завершается спуском по . Производные вычисляются численно. Спуск начать из точки (1;1). В ответе указать значение координаты , в которой будет находиться процесс оптимизации после 5-ти циклов. Ответ введите с точностью до 1-го знака после запятой (без округления).
вопросПравильный ответ:
0,5
Сложность вопроса
52
Сложность курса: Численные методы
32
Оценить вопрос
Комментарии:
Аноним
ответ подошёл
26 июл 2020
Аноним
Если бы не данные подсказки - я бы сломался c этими тестами intuit.
20 дек 2016
Другие ответы на вопросы из темы математика интуит.
- # Задана функция двух переменных: . Имеется условие: . Найти значения функции в условных экстремумах. Ответ — с точностью до 3-го знака.
- # Численно решить интегральное уравнение: , где . Использовать шаг . Решение получить на сетке: 0,00,10,20,30,40,50,60,70,8 Подсказка. Необходимо решить матричное уравнение: ; где . Где . Привести значение y(0,5). Ответ введите с точностью до 4-го знака после запятой (без округления).
- # Задано уравнение ; организовать его решение методом дихотомии на отрезке [1;4]. В ответе указать значение левой части уравнения в середине отрезка полученного после 3-х делений. Ответ введите с точностью до 1-го знака после запятой (без округления).
- # Дана сетка значений , где принимает значения 0; 1; 2; 3; 4; 5; 6; 7; 8. Построить многочлен Лагранжа для и вычислить значение многочлена Лагранжа в точке , где . В ответе указать относительную погрешность приближения функции в процентах. Ответ введите с точностью до 7-го знака после запятой (без округления).
- # Вычислить значение интеграла методом трапеций. Интервал интегрирования разбить на 128 участков. В ответе указать абсолютную величину разности между истинным значением интеграла и расчётным. Ответ введите с точностью до 6-го знака после запятой (без округления).