Главная /
Дифференциальные уравнения и краевые задачи /
Задано дифференциальное уравнение второго порядка с переменными коэффициентами:[формула], где [таблица] Найти решение с помощью подстановки:[формула]. Показать, что решение имеет вид:[формула], где [формула]. В ответе укажите значение [формула].
Задано дифференциальное уравнение второго порядка с переменными коэффициентами:, где
a | 648 |
b | 108 |
c | 17 |
f | 36 |
g | 3 |
Правильный ответ:
-27
Сложность вопроса
85
Сложность курса: Дифференциальные уравнения и краевые задачи
58
Оценить вопрос
Комментарии:
Аноним
Если бы не данные решения - я бы не осилил c этими тестами intuit.
19 мар 2017
Аноним
Я завалил экзамен, за что я не нашёл этот чёртов сайт с всеми ответами интуит до зачёта
18 сен 2016
Другие ответы на вопросы из темы математика интуит.
- # Задана краевая задача: \left\{ \begin{array}{ll} \alpha_0 y(a)+\alpha_1 y'(a)=A\\ \beta_0 y(b)+\beta_1 y'(b)=B \end{array} \right. Для дифференциального уравнения:. a07a14b06b12a0bA129B82k16 Показать, что решение имеет вид:. В ответе указать значение .
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a1b4 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение , если: A10B4
- # Дана система дифференциальных уравнений: \\ \frac{dx_1}{dt}=\frac{ax_2+bx_1}{bx_3}\\ \frac{dx_2}{dt}=\frac{ax_2+bx_1}{ax_3}\\ \frac{dx_3}{dt}=\frac{ax_2+bx_1}{x_3}\\ a3b5 Показать, что первыми интегралами системы являются выражения вида: \\ \alpha x_1+\beta x_2+\gamma x_3=A\\ \delta x_1+\varepsilon x_3=B\\ x_2=C\\ В ответе указать значение , если: A3B8
- # Дано характеристическое уравнение: a06a17a28a33a42a55a66a77a85a99 Составить матрицу Гурвица и вычислить значение главного диагонального минора .
- # Дана система дифференциальных уравнений: \left\{ \begin{array}{ll} \frac{dx_1}{dt_1}=a_{11}x_1+a_{12}x_2\\ \frac{dx_2}{dt_2}=a_{21}x_1+a_{22}x_2\\ \end{array} \right. a1114a124a21-4a226 Определите устойчиво (1) или неустойчиво (2) решение системы в начале координат.