Главная /
Исследование операций и модели экономического поведения
Исследование операций и модели экономического поведения - ответы на тесты Интуит
Курс посвящен теории исследования операций и теории игр, которые читаются студентам математических специальностей.
Список вопросов:
- # Две противоборствующие стороны пытаются овладеть двумя позициями. Для этого первая сторона располагает тремя подразделениями, вторая - четырьмя подразделениями (например, полками). Каждый из противников может выделить для захвата любой из позиций целое число подразделений (в том числе и нулевое), полностью расходуя ресурсы. Позиция считается занятой той стороной, которая выделила для ее захвата большее число подразделений. Какой вид имеет критерий эффективности первой стороны, если ее цель состоит в захвате максимального числа позиций
- # Два предприятия, обладающие производственными возможностями Ki, i=1,2, продают на рынке один и тот же вид продукции. Возможности рынка ограничены суммой денег С. Пусть xi, 0≤xi≤Ki - количество продукции, производимой предприятием i, а - себестоимость единицы продукции, pi, a≤pi≤C/xi - цена единицы продукции. Предположим, что: предприятия не знают объемов выпуска и выбираемых цен продукции друг друга; на рынке вначале покупается более дешевая продукция; в случае равенства цен покупается продукция второго предприятия. Укажите вид критерия эффективности первого предприятия, если его цель состоит в разорении партнера
- # Две конкурирующие фирмы производят сезонный товар, пользующийся спросом в период времени 0≤t≤1. Качество конкурирующих товаров зависит от времени их поступления на рынок – чем позже товар появляется на рынке, тем качество его выше. Примем, что покупатели при отсутствии конкуренции приобретают товар, имеющийся на рынке, а при наличии двух товаров отдают предпочтение товару более высокого качества. Если товары поступают на рынок одновременно, то они пользуются одинаковым спросом. Продажа товара приносит производителю доход С в единицу времени. Каким выражением описывается критерий эффективности первой сто-роны, если ее цель состоит в получении дохода, превосходящего доход конкурента?
- # Две противоборствующие стороны пытаются овладеть двумя позициями. Для этого первая сторона располагает тремя подразделениями, вторая - четырьмя подразделениями (например, полками). Каждый из противников может выделить для захвата любой из позиций целое число подразделений (в том числе и нулевое), полностью расходуя ресурсы. Позиция считается занятой той стороной, которая выделила для ее захвата большее число подразделений. Какой вид имеет критерий эффективности первой стороны, если цели сторон состоят в захвате большего числа позиций, чем у противника?
- # Два предприятия, обладающие производственными возможностями Ki, i=1,2, продают на рынке один и тот же вид продукции. Возможности рынка ограничены суммой денег С. Пусть xi, 0≤xi≤Ki - количество продукции, производимой предприятием i,, a - себестоимость единицы продукции, pi, a≤pi≤C/xi - цена единицы продукции. Предположим, что: предприятия не знают объемов выпуска и выбираемых цен продукции друг друга; на рынке вначале покупается более дешевая продукция; в случае равенства цен покупается продукция второго предприятия. Как выглядит критерий эффективности первого предприятия, стремящегося получить наибольшую прибыль?
- # Две конкурирующие фирмы производят сезонный товар, пользующийся спросом в период времени 0≤t≤1. Качество конкурирующих товаров зависит от времени их поступления на рынок - чем позже товар появляется на рынке, тем качество его выше. Примем, что покупатели при отсутствии конкуренции приобретают товар, имеющийся на рынке, а при наличии двух товаров отдают предпочтение товару более высокого качества. Если товары поступают на рынок одновременно, то они пользуются одинаковым спросом. Продажа товара приносит производителю доход С в единицу времени. Каким выражением описывается критерий эффективности первой стороны, если ее цель состоит в разорении конкурент?
- # Две противоборствующие стороны пытаются овладеть двумя позициями. Для этого первая сторона располагает тремя подразделениями, вторая - четырьмя подразделениями (например, полками). Каждый из противников может выделить для захвата любой из позиций целое число подразделений (в том числе и нулевое), полностью расходуя ресурсы. Позиция считается занятой той стороной, которая выделила для ее захвата большее число подразделений. Какой вид имеет критерий эффективности первой стороны, если ее цель состоит в уничтожении максимального числа подразделений противника? Предполагается, что одно подразделение первой стороны уничтожает одно подразделение второй при столкновении
- # Два предприятия, обладающие производственными возможностями Ki, i=1,2, продают на рынке один и тот же вид продукции. Возможности рынка ограничены суммой денег С. Пусть xi, 0≤xi≤Ki - количество продукции, производимой предприятием i, a - себестоимость единицы продукции, pi, a≤pi≤C/xi - цена единицы продукции. Предположим, что: предприятия не знают объемов выпуска и выбираемых цен продукции друг друга; на рынке вначале покупается более дешевая продукция; случае равенства цен покупается продукция второго предприятия. Укажите вид критерия эффективности первого предприятия, если его цель состоит в получении большей прибыли, чем у партнера
- # Две конкурирующие фирмы производят сезонный товар, пользующийся спросом в период времени 0≤t≤1. Качество конкурирующих товаров зависит от времени их поступления на рынок - чем позже товар появляется на рынке, тем качество его выше. Примем, что покупатели при отсутствии конкуренции приобретают товар, имеющийся на рынке, а при наличии двух товаров отдают предпочтение товару более высокого качества. Если товары поступают на рынок одновременно, то они пользуются одинаковым спросом. Продажа товара приносит производителю доход С в единицу времени. Каким выражением описывается критерий эффективности первой стороны, если ее цель состоит в максимизации дохода?
- # Какие рулетки реализуют случайный выбор с вероятностями (1/8,7/8)?
- # Укажите биматричную игру, для которой ситуация равновесия определяется из графика [Большая Картинка]
- # Какое из утверждений справедливо для биматричной игры
- # Какие рулетки реализуют случайный выбор с вероятностями (2/3,1/3)?
- # Укажите биматричную игру, для которой ситуации равновесия определяются из графика [Большая Картинка]
- # Какое утверждение справедливо для биматричной игры
- # Укажите вектора, являющиеся смешанными стратегиями первого игрока в игре
- # Укажите биматричную игру, для которой ситуации равновесия определяются из графика [Большая Картинка]
- # Пусть биматричная 2x2 игра обладает свойством (∀(i,j)≠(k,l))(aij≠akl,bij≠bkl). Какие утверждения справедливы для этой игры?
- # Цена игры с матрицей равна единице. Указать, какие векторы являются оптимальными по гарантированному результату стратегиями для первого игрока
- # Антагонистическая игра задана матрицей В пользу какого игрока поставлена игра?
- # Какие пары чистых стратегий игроков в биматричной игре являются устойчивыми и эффективными?
- # Цена игры с матрицей равна нулю. Указать, какие вектора являются оптимальными по гарантированному результату стратегиями для второго игрока
- # Являются ли ситуациями равновесия в биматричной игре чистые стратегии
- # Какие пары чистых стратегий игроков в биматричной игре являются эффективными, но не являются устойчивыми?
- # Какой из наборов является решением игры с матрицей
- # Укажите смешанные стратегии, являющиеся ситуациями равновесия в биматричной игре
- # Какие пары чистых стратегий игроков в биматричной игре являются устойчивыми и не являются эффективными?
- # Какое решение имеет задача линейного программирования max{u1+u2:ui≥0,1≤i≤2,-u1+u2≤9, u1+2u2≤36, 2u1+u2≤42}?
- # Антагонистическая игра задана матрицей Указать, какую из задач линейного программирования следует решить для отыскания оптимальной по гарантированному результату стратегии первого игрока:
- # В какой из матричных игр оптимальные стратегии такие же, как и в игре с матрицей
- # Какое решение имеет задача линейного программирования max{-u1+2u2:ui≥0,1≤i≤2,-u1+u2≤9, u1+2u2≤36, 2u1+u2≤42}?
- # Какое решение имеет задача линейного программирования Указать, какую из задач линейного программирования следует решить для отыскания оптимальной по гарантированному результату стратегии второго игрока
- # Задача линейного программирования с ограничениями типа неравенств имеет вид u1*+u2*=min{u1+u2:ui≥0,1≤i≤2,u1+4u2≥1, 3u1+2u2≥1, 5u1+u2≥1}?Для какой матричной игры решение задачи линейного программирования определяет оптимальную стратегию первого игрока?
- # Какое решение имеет задача линейного программирования max{2u1+u2:ui≥0,1≤i≤2,-u1+u2≤9, u1+2u2≤36, 2u1+u2≤42}?
- # Антагонистическая игра задана матрицей Указать, какую задачу линейного программирования следует решить для отыскания цены игры
- # Задача линейного программирования с ограничениями типа неравенств имеет вид w1*+w2*+w3*=max{w1+w2+w3:wj≥0,1≤j≤3, w1+3w2+5w3≤1,4w1+2w2+w3≤1} Для какой матричной игры решение задачи линейного программирования определяет оптимальную стратегию второго игрока?
- # Каждая из противоборствующих сторон пытается овладеть позицией противника. Первая сторона располагает двумя подразделениями, вторая – одним подразделением. Силы сторон распределяются для обороны собственной позиции и атаки позиции противника. Позиция считается занятой той стороной, которая выделила для ее захвата большее (целое) число подразделений. Если атакующие силы недостаточны для захвата позиций, то они отступают, и игра начинается заново. Игра завершается, если захвачена одна из позиций. Примем, что интересы сторон противоположны. При этом первая сторона выигрывает единицу, если ей удалось завладеть позицией противника, не потеряв своей, и проигрывает единицу, потеряв свой лагерь. Если в течение T периодов столкновений ни одна из позиций не захвачена, то игра завершается вничью. Для случая Т=2 дерево игры имеет вид [Большая Картинка] где пара (i,j) означает "оставить i подразделений для обороны и направить j подразделений для атаки". Укажите матрицу, которая является нормальной формой антагонистической игры в позиционной форме, соответствующей случаю Т=1
- # Каждая из противоборствующих сторон пытается овладеть позицией противника. Первая сторона располагает двумя подразделениями, вторая – одним подразделением. Силы сторон распределяются для обороны собственной позиции и атаки позиции противника. Позиция считается занятой той стороной, которая выделила для ее захвата большее (целое) число подразделений. Если атакующие силы недостаточны для захвата позиций, то они отступают, и игра начинается заново. Игра завершается, если захвачена одна из позиций. Примем, что интересы сторон противоположны. При этом первая сторона выигрывает единицу, если ей удалось завладеть позицией противника, не потеряв своей, и проигрывает единицу, потеряв свой лагерь. Если в течение T периодов столкновений ни одна из позиций не захвачена, то игра завершается вничью. Для случая Т=2 дерево игры имеет вид [Большая Картинка] где пара (i,j) означает "оставить i подразделений для обороны и направить j подразделений для атаки". Установите, какая 2x2 матрица описывает выигрыши первой стороны в первом из двух возможных периодов игры
- # Каждая из противоборствующих сторон пытается овладеть позицией противника. Первая сторона располагает двумя подразделениями, вторая – одним подразделением. Силы сторон распределяются для обороны собственной позиции и атаки позиции противника. Позиция считается занятой той стороной, которая выделила для ее захвата большее (целое) число подразделений. Если атакующие силы недостаточны для захвата позиций, то они отступают, и игра начинается заново. Игра завершается, если захвачена одна из позиций. Примем, что интересы сторон противоположны. При этом первая сторона выигрывает единицу, если ей удалось завладеть позицией противника, не потеряв своей, и проигрывает единицу, потеряв свой лагерь. Если в течение T периодов столкновений ни одна из позиций не захвачена, то игра завершается вничью. Для случая Т=2 дерево игры имеет вид [Большая Картинка] где пара (i,j) означает "оставить i подразделений для обороны и направить j подразделений для атаки". Установить, какая из матриц является нормальной формой антагонистической игры в позиционной форме, соответствующей случаю Т=2
- # Пусть первый игрок располагает m единицами ресурса, второй – n еди-ницами, и у каждого имеется по две стратегии. Если игроки выбирают стратегии с одинаковыми номерами (например, первые), то ресурс второго игрока уменьшается на единицу. При выборе разных по номерам стратегий уменьшается на единицу ресурс первого игрока. Игра заканчивается, если один из игроков исчерпает свой ресурс. При этом первый игрок выигрывает единицу, если ресурс второго игрока равен нулю, и проигрывает единицу если равен нулю его собственный ресурс. Динамика запасов ресурса за один шаг игры описывается деревом [Большая Картинка] где (m,n) – начальные запасы ресурсов первого и второго игрока соответственно. Какой вид имеет матрица выигрышей первого игрока, если запас ресурсов каждого из игроков равен единице?
- # Пусть первый игрок располагает m единицами ресурса, второй – n еди-ницами, и у каждого имеется по две стратегии. Если игроки выбирают стратегии с одинаковыми номерами (например, первые), то ресурс второго игрока уменьшается на единицу. При выборе разных по номерам стратегий уменьшается на единицу ресурс первого игрока. Игра заканчивается, если один из игроков исчерпает свой ресурс. При этом первый игрок выигрывает единицу, если ресурс второго игрока равен нулю, и проигрывает единицу если равен нулю его собственный ресурс. Динамика запасов ресурса за один шаг игры описывается деревом [Большая Картинка] где (m,n) – начальные запасы ресурсов первого и второго игрока соответственно. Укажите 2x2 матрицу, соответствующую первому из двух возможных этапов игры, при начальных запасах ресурсов (1,2)
- # Пусть первый игрок располагает m единицами ресурса, второй – n еди-ницами, и у каждого имеется по две стратегии. Если игроки выбирают стратегии с одинаковыми номерами (например, первые), то ресурс второго игрока уменьшается на единицу. При выборе разных по номерам стратегий уменьшается на единицу ресурс первого игрока. Игра заканчивается, если один из игроков исчерпает свой ресурс. При этом первый игрок выигрывает единицу, если ресурс второго игрока равен нулю, и проигрывает единицу если равен нулю его собственный ресурс. Динамика запасов ресурса за один шаг игры описывается деревом [Большая Картинка] где (m,n) – начальные запасы ресурсов первого и второго игрока соответственно. Какой вид имеет матрица антагонистической игры, соответствующая игре в позиционной форме, при начальных запасах ресурсов (1,2)?
- # Игра, задаваемая биматрицей разыгрывается повторно, если игроки выбрали стратегии с несовпадающими номерами. Выигрыши игроков в повторениях суммируются, причем каждому из них известен выигрыш, полученный на первом этапе. Являются ли ситуациями равновесия в исходной биматричной игре чистые стратегии?
- # Игра, задаваемая биматрицей разыгрывается повторно, если игроки выбрали стратегии с несовпадающими номерами. Выигрыши игроков в повторениях суммируются, причем каждому из них известен выигрыш, полученный на первом этапе. Какой вид имеет биматрица игры, соответствующая повторно разыгрываемой исходной игре?
- # Игра, задаваемая биматрицей разыгрывается повторно, если игроки выбрали стратегии с несовпадающими номерами. Выигрыши игроков в повторениях суммируются, причем каждому из них известен выигрыш, полученный на первом этапе. Являются ли ситуациями равновесия в биматричной 8x8 игре (см. ответ 1 второй задачи) чистые стратегии?
- # Какие согласованные смешанные стратегии игроков в задаче о сделке, порождаемой биматричной игрой к дележу (u,v)=(1,1)?
- # Какой вид имеет множество допустимых сделок без побочных платежей для биматричной игры
- # Чему равны гарантированные выигрыши игроков в биматричной игре
- # Какой вид имеет множество допустимых сделок без побочных платежей для биматричной игры
- # Чему равны гарантированные выигрыши игроков в биматричной игре
- # Какая согласованная смешанная стратегия игроков в задаче о сделке, порождаемой биматричной игрой приводит к дележу (u,v)=(5,3)
- # Какой вид имеет множество допустимых сделок без побочных платежей для биматричной игры
- # Чему равны гарантированные выигрыши игроков в биматричной игре
- # Какой вид имеет множество допустимых сделок с побочными платежами для биматричной игры
- # Какой вид имеет паретовская граница множества S? [Большая Картинка]
- # Какая сделка [Большая Картинка]при гарантированных уровнях u*=0,v*=0?
- # Какой вид имеет множество допустимых сделок с побочными платежами для биматричной игры
- # Какой вид имеет паретовская граница множества S? [Большая Картинка]
- # Какая сделка [Большая Картинка] при гарантированных уровнях u*=1,v*=0?
- # Какой вид имеет множество допустимых сделок с побочными платежами для биматричной игры
- # Какой вид имеет паретовская граница множества S? [Большая Картинка]
- # Какая сделка [Большая Картинка]при гарантированных уровнях u*=2,v*=1?
- # Задача торга. Продавец (первый игрок) располагает едини-цей неделимого товара. Он решает, какую назначить цену: высокую или низкую. Покупатель (второй игрок) может либо приобрести товар, либо отказаться от покупки. Матрицы доходов в не-которых условных единицах имеют вид [Большая Картинка]Какие решения сторон образуют ситуацию равновесия по Нэшу и к каким выигрышам приводит применение равновесных стратегий?
- # Задача торга. Продавец (первый игрок) располагает едини-цей неделимого товара. Он решает, какую назначить цену: высокую или низкую. Покупатель (второй игрок) может либо приобрести товар, либо отказаться от покупки. Матрицы доходов в не-которых условных единицах имеют вид [Большая Картинка] Чему равны гарантированные выигрыши сторон? Какая сделка (u0,v0) удовлетворяет аксиомам Нэша?
- # Задача торга. Продавец (первый игрок) располагает едини-цей неделимого товара. Он решает, какую назначить цену: высокую или низкую. Покупатель (второй игрок) может либо приобрести товар, либо отказаться от покупки. Матрицы доходов в не-которых условных единицах имеют вид [Большая Картинка]Как выглядят оптимальные стратегии угроз при заключении сделки и какую сделку (u+,v+) они порождают?
- # Фрахт судна. Грузоотправитель пытается договориться с судовладельцем о фрахте судна для перевозки скоропортящейся продукции. У каждого из партнеров две стратегии: "уступка" и "непреклонность" в цене фрахта. Доходы сторон в некоторых условных единицах описываются матрицами (грузоотправитель - первый игрок) [Большая Картинка]Какие решения сторон образуют ситуации равновесия по Нэшу и к каким выигрышам приводит применение равновесных стратегий?
- # Чему равны гарантированные выигрыши сторон? Какая сделка (u0,v0) удовлетворяет аксиомам Нэша?
- # Выпуск продукции. Два предприятия специализируются на выпуске одного из двух видов взаимодополняющей продукции (например, первое предприятие выпускает преимущественно столы, а второе - стулья). Каждое из предприятий может выпускать продукцию типов "М" или "К" (мало- или крупногабаритную). В зависимости от выбранных решений, ожидаемые доходы от реализации в некоторых условных единицах описываются матрицами [Большая Картинка]Какие решения сторон образуют ситуацию равновесия по Нэшу и к каким выигрышам приводит применение равновесных стратегий?
- # Множество допустимых сделок задачи о выпуске продукции имеет вид [Большая Картинка]Чему равны гарантированные выигрыши сторон? Какая сделка (u0,v0) удовлетворяет аксиомам Нэша?
- # Множество допустимых сделок задачи о выпуске продукции имеет вид [Большая Картинка]Как выглядят оптимальные стратегии угроз при заключении сделки и какую сделку (u+,v+) они порождают?
- # Обслуживание загородных маршрутов. Известно, что жители больших городов, придерживаясь рационального принципа проведения воскресного отдыха на свежем воздухе, все более охотно выезжают за город, используя автобусный транспорт. Поэтому в выходные дни возникает проблема выделения дополнительных автобусов, следующих в загородные места отдыха. Очевидно, что потребность в дополнительном транспорте зависит от погоды в выходной день. Функция потерь транспортного предприятия, вычисленная на основе прошлых лет, имеет вид [Большая Картинка] Графики функций математического ожидания потерь (функций риска) [Большая Картинка] Пусть в задаче обслуживания загородных маршрутов диспетчер принимает решение с учетом показаний барометра, причем, в силу несовершенства прибора, показания {дождь, переменно, ясно, очень сухо}={z1,z2,z3,z4} связаны с состоянием погоды стохастически:z1z2z3z4p(z/1)0,60,30,10p(z/2)0,10,10,50,3 Сколько решающих функций (правил преобразования показаний барометра в решения) имеется у диспетчера?
- # Обслуживание загородных маршрутов. Известно, что жители больших городов, придерживаясь рационального принципа проведения воскресного отдыха на свежем воздухе, все более охотно выезжают за город, используя автобусный транспорт. Поэтому в выходные дни возникает проблема выделения дополнительных автобусов, следующих в загородные места отдыха. Очевидно, что потребность в дополнительном транспорте зависит от погоды в выходной день. Функция потерь транспортного предприятия, вычисленная на основе прошлых лет, имеет вид [Большая Картинка] Графики функций математического ожидания потерь (функций риска) [Большая Картинка] Пусть априорное распределение вероятностей на состояниях природы в задаче обслуживания загородных маршрутов есть ξ=(1/2,1/2) (состояния природы равновозможны), и выбору решения предшествует эксперимент. Какая из решающих функций, d1 или d2, указанных в таблице, предпочтительнее?z1z2z3z4d1(z)α3α2α1α1d1(z)α3α2α2α1
- # Пусть в задаче обслуживания загородных маршрутов диспетчер принимает решение с учетом показаний барометра, причем в силу несовершенства прибора показания {дождь, переменно, ясно, очень сухо}={z1,z2,z3,z4} связаны с состоянием погоды стохастически:z1z2z3z4p(z/1)0,60,30,10p(z/2)0,10,10,50,3 Пусть априорное распределение вероятностей на состояниях природы в задаче обслуживания загородных маршрутов есть ξ=(0,1), и выбору решения предшествует эксперимент. Какая из решающих функций d1 или d2, указанных в таблице, предпочтительнее?z1z2z3z4d1(z)α3α2α1α1d2(z)α3α1α1α1
- # Контроль качества продукции. Заказчик, осуществляя приемку у исполнителя сложного технического изделия, может выбрать одно из двух решений: признать изделие годным и принять его в эксплуатацию (покрывая стоимость обнаруженных впоследствии дефектов) либо признать изделие непригодным для эксплуатации и потребовать замены отдельных (возможно, некачественных) узлов. Качество изделия может быть удовлетворительным или неудовлетворительным, в зависимости от соблюдения технологии изготовления изделия. Замена исправных узлов оплачивается заказчиком и составляет условную единицу. Стоимость обнаруженных во время эксплуатации дефектов обходится заказчику в два раза дороже, в остальных случаях потери отсутствуют. Матрица потерь заказчика имеет вид [Большая Картинка] при равновозможных состояниях природы?
- # Контроль качества продукции. Заказчик, осуществляя приемку у исполнителя сложного технического изделия, может выбрать одно из двух решений: признать изделие годным и принять его в эксплуатацию (покрывая стоимость обнаруженных впоследствии дефектов) либо признать изделие непригодным для эксплуатации и потребовать замены отдельных (возможно, некачественных) узлов. Качество изделия может быть удовлетворительным или неудовлетворительным, в зависимости от соблюдения технологии изготовления изделия. Замена исправных узлов оплачивается заказчиком и составляет условную единицу. Стоимость обнаруженных во время эксплуатации дефектов обходится заказчику в два раза дороже, в остальных случаях потери отсутствуют. Матрица потерь заказчика имеет вид [Большая Картинка] Отношения правдоподобия p(z/2)/p(z/1) для результатов тестирования есть z1- тестирование прошло успешноz2 - выполнилась большая часть тестовz3- выполнилась меньшая часть тестовz4 - ни один из тестов не выполнилсяp(z/2)/p(z/1)01/35∞ Каков вид байесовской решающей функции при равновоз-можных состояниях природы?
- # Выбор маршрута. Транспортное предприятие планирует открыть автобусную линию от нового микрорайона до центра города либо по маршруту [Большая Картинка] при априорном распределении вероятностей ξ=(0.3,0.7)?
- # Выбор маршрута. Транспортное предприятие планирует открыть автобусную линию от нового микрорайона до центра города либо по маршруту [Большая Картинка]Отношения правдоподобия p(z/2)/p(z/1) для результатов тестирования в задаче о выборе маршрута описываются таблицей z1 - на работу и домой по маршруту α1z2 - на работу и домой по маршруту α2z3- на работу по маршруту α1, домой по маршруту α2z4 - на работу по маршруту α2, домой по маршруту α1p(z/2)/p(z/1)3/5211Каков вид байесовской решающей функции при априорном распределении вероятностей ξ=(0.3,0.7)
- # Выбор структуры посевов. Руководство сельскохозяйственного предприятия решает проблему выбора участков земли для посадки картофеля. Для хорошего урожая требуется определенное количество влаги. В среднем максимальные урожаи получаются при решении о посадке картофеля на участке, характеризующемся большой влажностью почвы (решение [Большая Картинка] при априорном распределении вероятностей ξ(o.5,0.5)?
- # В статистической игре с единичным испытанием матрица потерь имеет вид Чему равны минимаксные потери статистика?
- # В статистической игре с единичным испытанием матрица потерь имеет вид Какая стратегия статистика является минимаксной?
- # В статистической 2x3 игре z1z2p(z/1)0,250,75p(z/2)0,750,25Какое решение принять статистику, если ξ=(0.5,0.5) и в результате эксперимента наблюдается z2?
- # В статистической игре с единичным испытанием матрица потерь имеет видЧему равны минимаксные потери статистика?
- # В статистической игре с единичным испытанием матрица потерь имеет Какая стратегия статистика является минимаксной?
- # В статистической 2x3 игре z1z2p(z/1)0,250,75p(z/2)0,750,25Какое решение принять статистику, если ξ=(0.25,0.75) и в результате эксперимента наблюдается z2?
- # В статистической игре с единичным испытанием матрица потерь имеет видЧему равны минимаксные потери статистика?
- # В статистической игре с единичным испытанием матрица потерь имеет видКакая стратегия статистика является минимаксной?
- # В статистической 2x3 игре z1z2p(z/1)0,250,75p(z/2)0,750,25Какое решение принять статистику, если ξ=(0.9,0.1) и в результате эксперимента наблюдается z2?
- # В игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)>X1=[-1,1], X2=[0,2], M1(x1,x2)=M2(x1,x2)=-x1-x2. Какой выигрыш гарантирует первому игроку стратегия x1=0?
- # Пусть в конечной игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)> X1={1,2,3,4}, X2={1,2,3,4,5} Укажите стратегии второго игрока, являющиеся наилучшими по гарантированному результату
- # Говорят, что стратегия x1′ строго доминирует стратегию x"1 в игре <X1,X2,M1(x1,x2),M2(x1,x2)>, если (∀x2∈X2)M1(x1′,x2) >M1(x1",x2). Какие утверждения справедливы для игры, в которой множества стратегий игроков Х1={1,2,3,4}, Х2={1,2,3,4,5}, а функции выигрыша заданы в виде
- # В игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)>X1=[-1,1], X2=[0,2], M1(x1,x2)=M2(x1,x2)=-x1-x2. Какой выигрыш гарантирует первому игроку стратегия x1=1?
- # Пусть в конечной игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)> X1={1,2,3,4}, X1={1,2,3,4,5} Какая стратегия первого игрока является наилучшей по гарантированному результату?
- # Говорят, что стратегия x2′ нестрого доминирует стратегию x2" в игре <X1,X2,M1(x1,x2),M2(x1,x2)>, если (∀x1∈X1)M2(x1′,x2) >M2(x1",x2) Какие утверждения справедливы для игры, в которой множества стратегий игроков X1={1,2,3,4}, X2={1,2,3,4,5}, а функции выигрыша заданы в виде
- # В игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)> X1=[-1,1], X2=[0,2], M1(x1,x2)=M2(x1,x2)=-x1-x2. Какой выигрыш гарантирует первому игроку стратегия x2=1?
- # Пусть в конечной игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)> X1={1,2,3,4}, X2={1,2,3,4,5} Какие стратегии игроков являются наилучшими по гарантированному результату?
- # Говорят, что стратегия x1a первого игрока является абсолютной в игре <X1,X2,M1(x1,x2),M2(x1,x2)>, если (∀x1∈X1)(∀x2∈X2)M1(x1а,x2) ≥M1(x1,x2) Какие утверждения справедливы для игры, в которой множества стратегий игроков X1={1,2,3,4}, X2={1,2,3,4,5}, а функции выигрыша заданы в виде
- # Выберите правильное утверждение: ситуацией равновесия по Нэшу в игре <X1,X2,M1(x1,x2), M2(x1,x2)> называется пара стратегий (x10,x20),удовлетворяющая соотношениям
- # Дуополия с назначением выпусков. Два производителя одного и того же товара могут производить его в объемах 0≤xi≤0.5, i=1,2. Затраты на выпуск единицы продукции составляют ci(xi)=Cixi,Ci>0. Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыль i-го производителя от выпуска товара в объеме xi описывается функцией Mi(xix2)=xip(x)-ci(xi). Какие объемы выпуска являются устойчивыми в дуополии с назначением выпусков (образуют ситуацию равновесия по Нэшу) при C1=0,5, C2=0,5?
- # Дуополия с назначением выпусков. Два производителя одного и того же товара могут производить его в объемах 0≤xi≤0.5, i=1,2. Затраты на выпуск единицы продукции составляют ci(xi)=Cixi,Ci>0. Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыль i-го производителя от выпуска товара в объеме xi описывается функцией Mi(xix2)=xip(x)-ci(xi). Какие объемы выпуска являются оптимальными по Парето (эффективными) в дуополии с назначением выпусков при C1=0,5, C2=0,5?
- # Выберите правильное утверждение: пара стратегий (x1,x2) называется оптимальной по Парето в игре <X1,X2,M1(x1,x2), M2(x1,x2)>, если
- # Дуополия с назначением выпусков. Два производителя одного и того же товара могут производить его в объемах 0≤xi≤0.5, i=1,2. Затраты на выпуск единицы продукции составляют ci(xi)=Cixi,Ci>0. Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыль i-го производителя от выпуска товара в объеме xi описывается функцией Mi(xix2)=xip(x)-ci(xi). Какие объемы выпуска являются устойчивыми (образуют ситуацию равновесия по Нэшу) в дуополии с назначением выпусков при C1=0,4, C2=0,4
- # Дуополия с назначением выпусков. Два производителя одного и того же товара могут производить его в объемах 0≤xi≤0.5, i=1,2. Затраты на выпуск единицы продукции составляют ci(xi)=Cixi,Ci>0. Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыль i-го производителя от выпуска товара в объеме xi описывается функцией Mi(xix2)=xip(x)-ci(xi). Какие объемы выпуска являются оптимальными по Парето (эффективными) в дуополии с назначением выпусков при C1=0,4, C2=0,4
- # Какое из утверждений справедливо для игры <X1,X2,M1(x1,x2), M2(x1,x2)>, где Х1=Х2=[-1,1], M1(x1,x2)= M2(x1,x2)=x1x2?
- # Какие объемы выпуска являются устойчивыми (образуют ситуацию равновесия по Нэшу) в дуополии с назначением выпусков при C1=0,7, C2=0,7
- # Какие объемы выпуска являются оптимальными по Парето (эффективными) в дуополии с назначением выпусков при C1=0,7, C2=0,7
- # Пусть в игре двух лиц [Большая Картинка] [Большая Картинка] Какое из утверждений справедливо, если игрокам известны критерии, множества стратегий и решения принимаются одновременно (случай симметричного распределения информации об игре)?
- # Пусть в игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)> множества стратегий конечны X1=X2={1,2} и порядок ходов заранее не определен. Игроку, делающему ход вторым, известен выбор партнера. В какой из игр возникает борьба за право первого хода?
- # Два производителя одного и того же товара могут производить его в объемах 0≤xi ≤1, i=1,2. Затраты на выпуск единицы продукции составляют ci(xi)=Cixi,Ci>0 Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыльi-го производителя от выпуска товара в объеме xi описывается функцией M1(x1,x2)=xip(x)-ci(xi). Указать, какой вид имеет график функции наилучшего ответа второго производителя на известное решение об объеме выпуска первого при C1=0,6,C2=0,4
- # Пусть в игре двух лиц [Большая Картинка] [Большая Картинка] Какое из утверждений справедливо, если игрокам известны критерии, множества стратегий и первым ходит первый игрок (случай несимметричного распределения информации об игре)?
- # Пусть в игре двух лиц <X1,X2,M1 (x1,x2),M2(x1,x2)> множества стратегий конечны X1=X2={1,2} и порядок ходов заранее не определен. Игроку, делающему ход вторым, известен выбор партнера. В какой из игр возникает борьба за право второго хода?
- # Два производителя одного и того же товара могут производить его в объемах 0≤xi≤1, i=1,2. Затраты на выпуск единицы продукции составляют cixi=Cixi,Ci>0 Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыль i-го производителя от выпуска товара в объеме xi описывается функцией M1(x1,x2)=xip(x)-ci(xi). Какое решение об объеме выпуска следует принять первому производителю, обладающим правом первого хода, если второй использует в качестве ответа функцию x2=0,3-x1/2 при C1=0,6,C2=0,4?
- # Пусть в игре двух лиц [Большая Картинка] [Большая Картинка]Какое из утверждений справедливо, если игрокам известны критерии, множества стратегий и первым ходит второй игрок (случай несимметричного распределения информации об игре)?
- # Пусть в игре двух лиц множества стратегий конечны X1=X2={1,2} и порядок ходов заранее не определен. Игроку, делающему ход вторым, известен выбор партнера. В какой из игр не возникает борьба за очередность ходов?
- # Два производителя одного и того же товара могут производить его в объемах 0≤xi≤1,i=1,2. Затраты на выпуск единицы продукции составляют ci(xi)=Cixi,Ci>0 Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыль i-го производителя от выпуска товара в объеме xi описывается функцией M1(x1,x2)=xip (x)-ci(xi) Какое решение об объеме выпуска следует принять первому производителю, обладающим правом первого хода, если второй использует в качестве ответа функцию x2 =0,6-1,5x1 при C1=0,6 C2=0,4?
- # Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид Поступление товара на рынок описывается функцией предложения pmin=2, pmax=12 При какой цене товара имеет баланс спроса и предложения?
- # Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид Поступление товара на рынок описывается функцией предложения pmin=2, pmax=12. Является ли цена, определяющая равновесие спроса и предложения, устойчивой, если количество товара, поступающего на рынок в текущий момент, определяется ценой товара в предшествующий момент дискретного времени?
- # Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет видПоступление товара на рынок описывается функцией предложения pmin=2, pmax=12. Пусть посредник при понижении цены осуществляет закупку двух единиц товара, которые сбывает при повышении цены. Чему равна прибыль посредника в результате операции купли-продажи, если в начальный момент времени p=8, S(8)=18?
- # Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид Поступление товара на рынок описывается функцией предложенияpmin=2, pmax=12. При какой цене товара имеет баланс спроса и предложения?
- # Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид Поступление товара на рынок описывается функцией предложения pmin=2, pmax=12. Является ли цена, определяющая равновесие спроса и предложения, устойчивой, если количество товара, поступающего на рынок в текущий момент, определяется ценой товара в предшествующий момент дискретного времени?
- # Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид Поступление товара на рынок описывается функцией предложения pmin=2, pmax=12. Пусть посредник при понижении цены осуществляет закупку двух единиц товара, которые сбываются при повышении цены. Чему равна прибыль посредника в результате операции купли-продажи, если в начальный момент времени p=10,5, S(10,5)=17?
- # Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид Поступление товара на рынок описывается функцией предложения pmin=2, pmax=12. При какой цене товара имеет баланс спроса и предложения?
- # Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет видПоступление товара на рынок описывается функцией предложения pmin=2, pmax=12. Является ли цена, определяющая равновесие спроса и предложения, устойчивой, если количество товара, поступающего на рынок в текущий момент, определяется ценой товара в предшествующий момент дискретного времени?
- # Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид Поступление товара на рынок описывается функцией предложения pmin=2, pmax=12. Пусть посредник при понижении цены осуществляет закупку двух единиц товара, которые сбывает при повышении цены. Чему равна прибыль посредника в результате операции купли-продажи, если в начальный момент времени p=8, S(8)=12
- # Какому типу принадлежит игра <X,Y,M1(x, y),M2 (x, y)>, в которой X={x:0≤x≤1},Y={y:0≤y≤1}
- # Чему равен минимальный гарантированный проигрыш второго игрока в антагонистической игре с ядром и множествами стратегий 0≤x≤1, 0≤y≤1?
- # Установить, какие точки являются седловыми для функции в области 0≤x≤1, 0≤y≤1
- # Какому типу принадлежит игра <X,Y,M1(x,y),M2 (x, y)>, в которой X={x:0≤x≤1},Y={y:0≤y≤1}
- # Чему равен максимальный гарантированный выигрыш первого игрока в антагонистической игре с ядром M(x,y)=-(x-y)2 и множествами стратегий 0≤x≤1, 0≤y≤1?
- # Установить, какие точки являются седловыми для функции M(x,y)=x-y в области 0≤x≤1,0≤y≤1?
- # Какому типу принадлежит игра <X,Y,M1(x, y),M2 (x, y)>, в которой X={x:0≤x≤1},Y={y:0≤y≤1}
- # Чему равен минимальный гарантированный проигрыш второго игрока в антагонистической игре с ядром M(x,y)=(x-y)2 и множествами стратегий -1≤x≤1,-1≤y≤1?
- # Установить, какие точки являются седловыми для функции M(x,y)=8xy-4x-4y+1 в области 0≤x≤1,0≤y≤1
- # Дуэль истребитель-бомбардировщик. Пусть в дуэли истребитель-бомбардировщик самолеты летят навстречу друг другу с единичного рас-стояния, и цель первой стороны (истребителя) состоит в поражении противника. Дуэль заканчивается, если одна из сторон поразила противника или стороны исчерпали боеприпасы. Вероятности попадания описываются в виде функций p1(x) и p2(y) расстояния между самолетами. Полезность исходов дуэли для первой стороны описывается таблицейбомбардировщик сбитбомбардировщик уцелелистребитель сбит10истребитель уцелел10 Каков вид усредненной полезности истребителя, если каждая из сторон может произвести один выстрел и дуэлянты не слышат выстрелов друг друга - дуэль бесшумная?
- # Дуэль истребитель-бомбардировщик. Пусть в дуэли истребитель-бомбардировщик самолеты летят навстречу друг другу с единичного рас-стояния, и цель первой стороны (истребителя) состоит в поражении противника. Дуэль заканчивается, если одна из сторон поразила противника или стороны исчерпали боеприпасы. Вероятности попадания описываются в виде функций p1(x) и p2(y) расстояния между самолетами. Полезность исхо-дов дуэли для первой стороны описывается таблицей бомбардировщик сбитбомбардировщик уцелелистребитель сбит10истребитель уцелел10 Каков вид усредненной полезности истребителя, если каждая из сторон может произвести один выстрел и дуэлянты слышат выстрелы друг друга - дуэль шумная?
- # Установить, какие точки являются седловыми для функции в области 0≤x≤1,0≤y≤1
- # Дуэль истребитель-бомбардировщик. Пусть в дуэли истребитель-бомбардировщик самолеты летят навстречу друг другу с единичного рас-стояния, и цель второй стороны (бомбардировщика) состоит в выживании. Дуэль заканчивается, если одна из сторон поразила противника или стороны исчерпали боеприпасы. Вероятности попадания описываются в виде функцийирасстояния между самолетами. Полезность исходов дуэли для второй стороны описывается таблицейбомбардировщик сбитбомбардировщик уцелелистребитель сбит01истребитель уцелел01 Каков вид усредненной полезности бомбардировщика, если каждая из сторон может произвести один выстрел и дуэлянты не слышат выстрелов друг друга - дуэль бесшумная
- # Дуэль истребитель-бомбардировщик. Пусть в дуэли истребитель-бомбардировщик самолеты летят навстречу друг другу с единичного рас-стояния, и цель второй стороны (бомбардировщика) состоит в выживании. Дуэль заканчивается, если одна из сторон поразила противника или стороны исчерпали боеприпасы. Вероятности попадания описываются в виде функцийирасстояния между самолетами. Полезность исходов дуэли для второй стороны описывается таблицейбомбардировщик сбитбомбардировщик уцелелистребитель сбит01истребитель уцелел01 Каков вид усредненной полезности бомбардировщика, если каждая из сторон может произвести один выстрел и дуэлянты слышат выстрелы друг друга - дуэль шумная
- # Установить, какие точки являются седловыми для функции в области 0≤x≤1,0≤y≤1
- # Дуэль истребитель-бомбардировщик. Пусть в дуэли истребитель-бомбардировщик самолеты летят навстречу друг другу с единичного расстояния, и цель первой стороны (истребителя) состоит как в выживании, так и в поражении противника. Дуэль заканчивается, если одна из сторон поразила противника или стороны исчерпали боеприпасы. Вероятности попадания описываются в виде функцийирасстояния между самолетами. Полезность исходов дуэли для первой стороны описывается таблицейбомбардировщик сбитбомбардировщик уцелелистребитель сбит0-1истребитель уцелел10 Каков вид усредненной полезности истребителя, если каждая из сторон может произвести один выстрел и дуэлянты не слышат выстрелов друг друга - дуэль бесшумная
- # Дуэль истребитель-бомбардировщик. Пусть в дуэли истребитель-бомбардировщик самолеты летят навстречу друг другу с единичного рас-стояния, и цель первой стороны (истребителя) состоит как в выживании, так и в поражении противника. Дуэль заканчивается, если одна из сторон поразила противника или стороны исчерпали боеприпасы. Вероятности попадания описываются в виде функцийирасстояния между самолетами. Полезность исходов дуэли для первой стороны описывается таблицейбомбардировщик сбитбомбардировщик уцелелистребитель сбит0-1истребитель уцелел10Каков вид усредненной полезности истребителя, если каждая из сторон может произвести один выстрел и дуэлянты слышат выстрелы друг друга - дуэль шумная?
- # Установить, какие точки являются седловыми для функции в области 0≤x≤1,0≤y≤1
- # Установить, какая матрица является нормальной формой антагонистической игры в позиционной форме, задаваемой деревом [Большая Картинка] Предполагается, что первым ходит первый игрок
- # Позиционная игра. Антагонистическая игра с полной информацией, в которой первым ходит первый игрок, задана деревом [Большая Картинка] Какие стратегии образуют седловую точку ядра антагонистической игры?
- # Позиционная игра. Антагонистическая игра с полной информацией, в которой первым ходит первый игрок, задана деревом [Большая Картинка]Каковы размеры матрицы игры?
- # Установить, какая матрица является нормальной формой антагонистической игры в позиционной форме, задаваемой деревом. Предполагается, что первым ходит первый игрок [Большая Картинка]
- # Позиционная игра. Антагонистическая игра с полной информацией задана деревом [Большая Картинка] Игра начинается с бросания жребия для определения порядка ходов игроков: при выпадении единицы первым ходит первый игрок, при выпадении двойки - второй. Какие стратегии образуют седловую точку ядра антагонистической игры?
- # Позиционная игра. Антагонистическая игра с полной информацией задана деревом [Большая Картинка] Игра начинается с бросания жребия для определения порядка ходов игроков: при выпадении единицы первым ходит первый игрок, при выпадении двойки - второй. Каковы размеры матрицы игры?
- # Установить, какая матрица является нормальной формой антагонистической игры в позиционной форме, задаваемой деревом [Большая Картинка] Предполагается, что вначале бросается симметричная монета, после чего ходит второй игрок
- # Позиционная игра. Антагонистическая игра с полной информацией, в которой первым ходит первый игрок, задана деревом [Большая Картинка] Какие стратегии образуют седловую точку ядра антагонистической игры?
- # Позиционная игра. Антагонистическая игра с полной информацией, в которой первым ходит первый игрок, задана деревом [Большая Картинка] Каковы размеры матрицы игры?
- # Какие пары стратегий являются седловыми точками матричной игры
- # Укажите фигуру, соответствующую следующей игре: Ход 1. Случайно выбирается число u из множества {1,2}. Ход 2. Первый игрок, зная значение u, выбирает число x∈{1,2}. Ход 3. Второй игрок, не зная значения u и зная значение x, выбирает y∈{1,2}. После трех ходов первый игрок выигрывает у второго величину x+y, если сумма x+y четна, и проигрывает ее в противном случае
- # Укажите деревья, являющиеся позиционной формой антагонистической игры
- # Какие пары стратегий являются седловыми точками матричной игры
- # Какие пары стратегий являются седловыми точками матричной игры